References
-
Neurath, M. F., Artis, D. & Becker, C. The intestinal barrier: a pivotal role in health, inflammation, and cancer. Lancet Gastroenterol. Hepatol. 10, 573–592 (2025).
-
Chen, Y. et al. Reinforcement of the intestinal mucosal barrier via mucus-penetrating PEGylated bacteria. Nat. Biomed. Eng. 8, 823–841 (2024).
-
Yang, W. & Cong, Y. Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cell Mol. Immunol. 18, 866–877 (2021).
-
Du, L., Qi, R., Wang, J., Liu, Z. & Wu, Z. Indole-3-propionic acid, a functional metabolite of Clostridium sporogenes, promotes muscle tissue development and reduces muscle cell inflammation. Int. J. Mol. Sci. 22, 12435 (2021).
-
Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506 (2020).
-
Lu, Q. et al. A host-adapted auxotrophic gut symbiont induces mucosal immunodeficiency. Science 385, eadk2536 (2024).
-
Sosnowski, K. & Przybyłkowski, A. Ethanol-induced changes to the gut microbiome compromise the intestinal homeostasis: a review. Gut Microbes 16, 2393272 (2024).
-
Li, T. et al. A gut microbiota-bile acid axis promotes intestinal homeostasis upon aspirin-mediated damage. Cell Host Microbe 32, 191–208.e199 (2024).
-
Soranno, D. E. et al. A review of gut failure as a cause and consequence of critical illness. Crit. Care 29, 91 (2025).
-
Lee, Y., Kamada, N. & Moon, J. J. Oral nanomedicine for modulating immunity, intestinal barrier functions, and gut microbiome. Adv. Drug Deliv. Rev. 179, 114021 (2021).
-
Kotla, N. G. & Rochev, Y. IBD disease-modifying therapies: insights from emerging therapeutics. Trends Mol. Med. 29, 241–253 (2023).
-
Graham, W. V. et al. Intracellular MLCK1 diversion reverses barrier loss to restore mucosal homeostasis. Nat. Med. 25, 690–700 (2019).
-
Schwartz, D. M. et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov. 16, 843–862 (2017).
-
Wang, Z. et al. Synergistic role of gut-microbial L-ornithine in enhancing ustekinumab efficacy for Crohn’s disease. Cell Metab. 37, 1089–1102 (2025).
-
Zhu, Q. et al. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharm. Sin. B 11, 2416–2448 (2021).
-
Cao, Z. & Liu, J. Surface nanocoating of bacteria as a versatile platform to develop living therapeutics. Nat. Protoc. 19, 3162–3190 (2024).
-
Zhou, J. et al. Programmable probiotics modulate inflammation and gut microbiota for inflammatory bowel disease treatment after effective oral delivery. Nat. Commun. 13, 3432 (2022).
-
Lv, Y. et al. Sodium butyrate-loaded mcrospheres with enhanced bioavailability for targeted treatment of intestinal barrier injury. Adv. Healthc. Mater. 14, e2402773 (2024).
-
Zhu, R. et al. Inulin-based nanoparticle modulates gut microbiota and immune microenvironment for improving colorectal cancer therapy. Adv. Funct. Mater. 34, 2407685 (2024).
-
Jafari, M. T., Saraji, M. & Sherafatmand, H. Polypyrrole/montmorillonite nanocomposite as a new solid phase microextraction fiber combined with gas chromatography-corona discharge ion mobility spectrometry for the simultaneous determination of diazinon and fenthion organophosphorus pesticides. Anal. Chim. Acta 814, 69–78 (2014).
-
Millman, E., Chatterjee, A., Parker, K. M. & Catalano, J. G. Cation exchange to montmorillonite induces selective adsorption of amino acids. Geochim. Cosmochim. Acta 372, 181–195 (2024).
-
Sun, Y. & Lei, A. Ca2+-Facilitated adhesion of bacteria on the Na-montmorillonite surface. ACS Omega 8, 3385–3395 (2023).
-
Roager, H. M. & Licht, T. R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 9, 3294 (2018).
-
Wang, C., Chang, T., Yang, H. & Cui, M. Surface physiological changes induced by lactic acid on pathogens in consideration of pKa and pH. Food Control 46, 525–531 (2014).
-
Llibre, A., Kucuk, S., Gope, A., Certo, M. & Mauro, C. Lactate: A key regulator of the immune response. Immunity 58, 535–554 (2025).
-
Lee, Y.-S. et al. Microbiota-derived lactate accelerates intestinal stem-cell-mediated epithelial development. Cell Host Microbe 24, 833–846 (2018).
-
Zhu, P. et al. Fabrication of hyaluronic acid-inulin coated Enterococcus faecium for colon-targeted delivery to fight Fusobacterium nucleatum. Carbohydr. Polym 329, 121797 (2024).
-
Caillard, R. & Lapointe, N. In vitro gastric survival of commercially available probiotic strains and oral dosage forms. Int. J. Pharm. 519, 125–127 (2017).
-
Zmora, N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174, 1388–1405.e1321 (2018).
-
Huang, B. et al. Inflammation-oriented montmorillonite adjuvant enhanced oral delivery of anti-TNF-α nanobody against inflammatory bowel disease. Proc. Natl. Acad. Sci. USA 121, e2320482121 (2024).
-
Lin, Y. et al. A soil-inspired dynamically responsive chemical system for microbial modulation. Nat. Chem. 15, 119–128 (2023).
-
Pelaseyed, T. et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol. Rev. 260, 8–20 (2014).
-
Lee, J., Menon, N. V., Truong, H. D. & Lim, C. T. Dynamics of spatial organization of bacterial communities in a tunable flow gut microbiome-on-a-chip. Small 21, 2410258 (2025).
-
Gong, F., Ito, K., Nakamura, Y. & Yanofsky, C. The mechanism of tryptophan induction of tryptophanase operon expression: tryptophan inhibits release factor-mediated cleavage of TnaC-peptidyl-tRNA(Pro). Proc. Natl. Acad. Sci. USA 98, 8997–9001 (2001).
-
Kaur, N. & Kishore, D. Montmorillonite: An efficient, heterogeneous and green catalyst for organic synthesis. J. Chem. Pharm. Res. 4, 991–1015 (2012).
-
Tolonen, A. C. et al. Synthetic glycans control gut microbiome structure and mitigate colitis in mice. Nat. Commun. 13, 1244 (2022).
-
Zarkan, A., Liu, J., Matuszewska, M., Gaimster, H. & Summers, D. K. Local and universal action: the paradoxes of indole signalling in bacteria. Trends Microbiol. 28, 566–577 (2020).
-
Zhang, Y., Cai, Y., Zhang, B. & Zhang, Y.-H. P. J. Spatially structured exchange of metabolites enhances bacterial survival and resilience in biofilms. Nat. Commun. 15, 7575 (2024).
-
Malviya, J. et al. Metabolomic profiling of bacterial biofilm: trends, challenges, and an emerging antibiofilm target. World J. Microb. Biot. 39, 212 (2023).
-
Jandl, B., Dighe, S., Gasche, C., Makristathis, A. & Muttenthaler, M. Intestinal biofilms: pathophysiological relevance, host defense, and therapeutic opportunities. Clin. Microbiol. Rev. 37, e0013323 (2024).
-
Ma, W. et al. Bacillus subtilis biofilm development in the presence of soil clay minerals and iron oxides. NPJ Biofilms Microbiomes 3, 4 (2017).
-
Lu, H., Que, Y., Wu, X., Guan, T. & Guo, H. Metabolomics deciphered metabolic reprogramming Required for Biofilm Formation. Sci. Rep. 9, 13160 (2019).
-
Wang, F., Wang, Z. & Tang, J. The interactions of Candida albicans with gut bacteria: a new strategy to prevent and treat invasive intestinal candidiasis. Gut Pathogens 15, 30 (2023).
-
Zhang, Z. J., Pedicord, V. A., Peng, T. & Hang, H. C. Site-specific acylation of a bacterial virulence regulator attenuates infection. Nat. Chem. Biol. 16, 95–103 (2020).
-
Vega, N. M., Allison, K. R., Samuels, A. N., Klempner, M. S. & Collins, J. J. Salmonella typhimurium intercepts Escherichia coli signaling to enhance antibiotic tolerance. Proc. Natl. Acad. Sci. USA 110, 14420–14425 (2013).
-
Zhu, J. et al. Mechanisms of probiotic Bacillus against enteric bacterial infections. One Health Adv. 1, 21 (2023).
-
Eshleman, E. M. et al. Microbiota-derived butyrate restricts tuft cell differentiation via histone deacetylase 3 to modulate intestinal type 2 immunity. Immunity 57, 319–332 (2024).
-
Gallardo-Becerra, L., Cervantes-Echeverría, M., Cornejo-Granados, F., Vazquez-Morado, L. E. & Ochoa-Leyva, A. Perspectives in searching antimicrobial peptides (AMPs) produced by the microbiota. Microb. Ecol. 87, 8 (2023).
-
Tomlinson, K. L. et al. Staphylococcus aureus stimulates neutrophil itaconate production that suppresses the oxidative burst. Cell Reports 42, 112064 (2023).
-
Keskey, R. C. et al. Enterobactin inhibits microbiota-dependent activation of AhR to promote bacterial sepsis in mice. Nat. Microbiol. 10, 388–404 (2025).
-
Jung, Y. et al. IL-1β in eosinophil-mediated small intestinal homeostasis and IgA production. Mucosal Immunol. 8, 930–942 (2015).
-
Johnson, K. E. & Wilgus, T. A. Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Adv. Wound Care 3, 647–661 (2014).
-
Chen, L. et al. TGFB1 induces fetal reprogramming and enhances intestinal regeneration. Cell Stem Cell 30, 1520–1537.e1528 (2023).
-
Branchett, W. J., Saraiva, M. & O’Garra, A. Regulation of inflammation by Interleukin-10 in the intestinal and respiratory mucosa. Curr. Opin. Immunol. 91, 102495 (2024).
-
Hegarty, L. M., Jones, G.-R. & Bain, C. C. Macrophages in intestinal homeostasis and inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 20, 538–553 (2023).
-
Mudter, J. & Neurath, M. F. Il-6 signaling in inflammatory bowel disease: pathophysiological role and clinical relevance. Inflamm. Bowel Dis. 13, 1016–1023 (2007).
-
Muro, P. et al. The emerging role of oxidative stress in inflammatory bowel disease. Front. Endocrinol. 15, 1390351 (2024).
-
Zheng, T. et al. Protein kinase p38α signaling in dendritic cells regulates colon inflammation and tumorigenesis. Proc. Natl. Acad. Sci. USA 115, E12313–e12322 (2018).
-
Tezuka, H. & Ohteki, T. Regulation of IgA production by intestinal dendritic cells and related cells. Front. Immunol. 10, 1891 (2019).
-
Lin, S. et al. Mucosal immunity–mediated modulation of the gut microbiome by oral delivery of probiotics into Peyer’s patches. Sci. Adv. 7, eabf0677 (2021).
-
Chen, Z. et al. Foxo1 controls gut homeostasis and commensalism by regulating mucus secretion. J. Exp. Med. 218, e20210324 (2021).
-
Jiang, H., Chen, C. & Gao, J. Extensive summary of the important roles of indole propionic acid, a gut microbial metabolite in host health and disease. Nutrients 15, https://doi.org/10.3390/nu15010151 (2022).
-
Matsuzawa, M. et al. The protective role of conjunctival goblet cell mucin sialylation. Nat. Commun. 14, 1417 (2023).
-
Zhao, T. et al. Impact of structurally diverse polysaccharides on colonic mucin O-glycosylation and gut microbiota. NPJ Biofilms Microbiomes 9, 97 (2023).
-
Kayama, H., Okumura, R. & Takeda, K. Interaction Between the Microbiota, Epithelia, and Immune Cells in the Intestine. Annu. Rev. Immunol. 38, 23–48 (2020).
-
Yu, D. et al. MLCK-dependent exchange and actin binding region-dependent anchoring of ZO-1 regulate tight junction barrier function. Proc. Natl. Acad. Sci. USA 107, 8237–8241 (2010).
-
He, W.-Q. et al. Contributions of myosin light chain kinase to regulation of epithelial paracellular permeability and mucosal homeostasis. Int. J. Mol. Sci. 21, 993 (2020).
-
Marchiando, A. M. et al. Caveolin-1-dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo. J. Cell Biol. 189, 111–126 (2010).
-
Fatale, S. et al. Montmorillonite: An advanced material with diverse pharmaceutical and medicinal applications. Ann. Pharm. Fr. 83, 588–604 (2025).
-
Iliev, I. D. & Cadwell, K. Effects of intestinal fungi and viruses on immune responses and inflammatory bowel diseases. Gastroenterology 160, 1050–1066 (2021).
-
Li, X. V. et al. Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature 603, 672–678 (2022).
-
Oh, S., Go, G. W., Mylonakis, E. & Kim, Y. The bacterial signalling molecule indole attenuates the virulence of the fungal pathogen Candida albicans. J. Appl. Microbiol. 113, 622–628 (2012).
-
Tursi, S. A. et al. Salmonella Typhimurium biofilm disruption by a human antibody that binds a pan-amyloid epitope on curli. Nat. Commun. 11, 1007 (2020).
