A montmorillonite-based oral fermentation system enables long-lasting in-situ biosynthesis to restore intestinal homeostasis

a-montmorillonite-based-oral-fermentation-system-enables-long-lasting-in-situ-biosynthesis-to-restore-intestinal-homeostasis
A montmorillonite-based oral fermentation system enables long-lasting in-situ biosynthesis to restore intestinal homeostasis

References

  1. Neurath, M. F., Artis, D. & Becker, C. The intestinal barrier: a pivotal role in health, inflammation, and cancer. Lancet Gastroenterol. Hepatol. 10, 573–592 (2025).

    Google Scholar 

  2. Chen, Y. et al. Reinforcement of the intestinal mucosal barrier via mucus-penetrating PEGylated bacteria. Nat. Biomed. Eng. 8, 823–841 (2024).

    Google Scholar 

  3. Yang, W. & Cong, Y. Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cell Mol. Immunol. 18, 866–877 (2021).

    Google Scholar 

  4. Du, L., Qi, R., Wang, J., Liu, Z. & Wu, Z. Indole-3-propionic acid, a functional metabolite of Clostridium sporogenes, promotes muscle tissue development and reduces muscle cell inflammation. Int. J. Mol. Sci. 22, 12435 (2021).

    Google Scholar 

  5. Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506 (2020).

    Google Scholar 

  6. Lu, Q. et al. A host-adapted auxotrophic gut symbiont induces mucosal immunodeficiency. Science 385, eadk2536 (2024).

    Google Scholar 

  7. Sosnowski, K. & Przybyłkowski, A. Ethanol-induced changes to the gut microbiome compromise the intestinal homeostasis: a review. Gut Microbes 16, 2393272 (2024).

    Google Scholar 

  8. Li, T. et al. A gut microbiota-bile acid axis promotes intestinal homeostasis upon aspirin-mediated damage. Cell Host Microbe 32, 191–208.e199 (2024).

    Google Scholar 

  9. Soranno, D. E. et al. A review of gut failure as a cause and consequence of critical illness. Crit. Care 29, 91 (2025).

    Google Scholar 

  10. Lee, Y., Kamada, N. & Moon, J. J. Oral nanomedicine for modulating immunity, intestinal barrier functions, and gut microbiome. Adv. Drug Deliv. Rev. 179, 114021 (2021).

    Google Scholar 

  11. Kotla, N. G. & Rochev, Y. IBD disease-modifying therapies: insights from emerging therapeutics. Trends Mol. Med. 29, 241–253 (2023).

    Google Scholar 

  12. Graham, W. V. et al. Intracellular MLCK1 diversion reverses barrier loss to restore mucosal homeostasis. Nat. Med. 25, 690–700 (2019).

    Google Scholar 

  13. Schwartz, D. M. et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov. 16, 843–862 (2017).

    Google Scholar 

  14. Wang, Z. et al. Synergistic role of gut-microbial L-ornithine in enhancing ustekinumab efficacy for Crohn’s disease. Cell Metab. 37, 1089–1102 (2025).

    Google Scholar 

  15. Zhu, Q. et al. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharm. Sin. B 11, 2416–2448 (2021).

    Google Scholar 

  16. Cao, Z. & Liu, J. Surface nanocoating of bacteria as a versatile platform to develop living therapeutics. Nat. Protoc. 19, 3162–3190 (2024).

    Google Scholar 

  17. Zhou, J. et al. Programmable probiotics modulate inflammation and gut microbiota for inflammatory bowel disease treatment after effective oral delivery. Nat. Commun. 13, 3432 (2022).

    Google Scholar 

  18. Lv, Y. et al. Sodium butyrate-loaded mcrospheres with enhanced bioavailability for targeted treatment of intestinal barrier injury. Adv. Healthc. Mater. 14, e2402773 (2024).

    Google Scholar 

  19. Zhu, R. et al. Inulin-based nanoparticle modulates gut microbiota and immune microenvironment for improving colorectal cancer therapy. Adv. Funct. Mater. 34, 2407685 (2024).

    Google Scholar 

  20. Jafari, M. T., Saraji, M. & Sherafatmand, H. Polypyrrole/montmorillonite nanocomposite as a new solid phase microextraction fiber combined with gas chromatography-corona discharge ion mobility spectrometry for the simultaneous determination of diazinon and fenthion organophosphorus pesticides. Anal. Chim. Acta 814, 69–78 (2014).

    Google Scholar 

  21. Millman, E., Chatterjee, A., Parker, K. M. & Catalano, J. G. Cation exchange to montmorillonite induces selective adsorption of amino acids. Geochim. Cosmochim. Acta 372, 181–195 (2024).

    Google Scholar 

  22. Sun, Y. & Lei, A. Ca2+-Facilitated adhesion of bacteria on the Na-montmorillonite surface. ACS Omega 8, 3385–3395 (2023).

    Google Scholar 

  23. Roager, H. M. & Licht, T. R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 9, 3294 (2018).

    Google Scholar 

  24. Wang, C., Chang, T., Yang, H. & Cui, M. Surface physiological changes induced by lactic acid on pathogens in consideration of pKa and pH. Food Control 46, 525–531 (2014).

    Google Scholar 

  25. Llibre, A., Kucuk, S., Gope, A., Certo, M. & Mauro, C. Lactate: A key regulator of the immune response. Immunity 58, 535–554 (2025).

    Google Scholar 

  26. Lee, Y.-S. et al. Microbiota-derived lactate accelerates intestinal stem-cell-mediated epithelial development. Cell Host Microbe 24, 833–846 (2018).

    Google Scholar 

  27. Zhu, P. et al. Fabrication of hyaluronic acid-inulin coated Enterococcus faecium for colon-targeted delivery to fight Fusobacterium nucleatum. Carbohydr. Polym 329, 121797 (2024).

    Google Scholar 

  28. Caillard, R. & Lapointe, N. In vitro gastric survival of commercially available probiotic strains and oral dosage forms. Int. J. Pharm. 519, 125–127 (2017).

    Google Scholar 

  29. Zmora, N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174, 1388–1405.e1321 (2018).

    Google Scholar 

  30. Huang, B. et al. Inflammation-oriented montmorillonite adjuvant enhanced oral delivery of anti-TNF-α nanobody against inflammatory bowel disease. Proc. Natl. Acad. Sci. USA 121, e2320482121 (2024).

    Google Scholar 

  31. Lin, Y. et al. A soil-inspired dynamically responsive chemical system for microbial modulation. Nat. Chem. 15, 119–128 (2023).

    Google Scholar 

  32. Pelaseyed, T. et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol. Rev. 260, 8–20 (2014).

    Google Scholar 

  33. Lee, J., Menon, N. V., Truong, H. D. & Lim, C. T. Dynamics of spatial organization of bacterial communities in a tunable flow gut microbiome-on-a-chip. Small 21, 2410258 (2025).

    Google Scholar 

  34. Gong, F., Ito, K., Nakamura, Y. & Yanofsky, C. The mechanism of tryptophan induction of tryptophanase operon expression: tryptophan inhibits release factor-mediated cleavage of TnaC-peptidyl-tRNA(Pro). Proc. Natl. Acad. Sci. USA 98, 8997–9001 (2001).

    Google Scholar 

  35. Kaur, N. & Kishore, D. Montmorillonite: An efficient, heterogeneous and green catalyst for organic synthesis. J. Chem. Pharm. Res. 4, 991–1015 (2012).

    Google Scholar 

  36. Tolonen, A. C. et al. Synthetic glycans control gut microbiome structure and mitigate colitis in mice. Nat. Commun. 13, 1244 (2022).

    Google Scholar 

  37. Zarkan, A., Liu, J., Matuszewska, M., Gaimster, H. & Summers, D. K. Local and universal action: the paradoxes of indole signalling in bacteria. Trends Microbiol. 28, 566–577 (2020).

    Google Scholar 

  38. Zhang, Y., Cai, Y., Zhang, B. & Zhang, Y.-H. P. J. Spatially structured exchange of metabolites enhances bacterial survival and resilience in biofilms. Nat. Commun. 15, 7575 (2024).

    Google Scholar 

  39. Malviya, J. et al. Metabolomic profiling of bacterial biofilm: trends, challenges, and an emerging antibiofilm target. World J. Microb. Biot. 39, 212 (2023).

    Google Scholar 

  40. Jandl, B., Dighe, S., Gasche, C., Makristathis, A. & Muttenthaler, M. Intestinal biofilms: pathophysiological relevance, host defense, and therapeutic opportunities. Clin. Microbiol. Rev. 37, e0013323 (2024).

    Google Scholar 

  41. Ma, W. et al. Bacillus subtilis biofilm development in the presence of soil clay minerals and iron oxides. NPJ Biofilms Microbiomes 3, 4 (2017).

    Google Scholar 

  42. Lu, H., Que, Y., Wu, X., Guan, T. & Guo, H. Metabolomics deciphered metabolic reprogramming Required for Biofilm Formation. Sci. Rep. 9, 13160 (2019).

    Google Scholar 

  43. Wang, F., Wang, Z. & Tang, J. The interactions of Candida albicans with gut bacteria: a new strategy to prevent and treat invasive intestinal candidiasis. Gut Pathogens 15, 30 (2023).

    Google Scholar 

  44. Zhang, Z. J., Pedicord, V. A., Peng, T. & Hang, H. C. Site-specific acylation of a bacterial virulence regulator attenuates infection. Nat. Chem. Biol. 16, 95–103 (2020).

    Google Scholar 

  45. Vega, N. M., Allison, K. R., Samuels, A. N., Klempner, M. S. & Collins, J. J. Salmonella typhimurium intercepts Escherichia coli signaling to enhance antibiotic tolerance. Proc. Natl. Acad. Sci. USA 110, 14420–14425 (2013).

    Google Scholar 

  46. Zhu, J. et al. Mechanisms of probiotic Bacillus against enteric bacterial infections. One Health Adv. 1, 21 (2023).

    Google Scholar 

  47. Eshleman, E. M. et al. Microbiota-derived butyrate restricts tuft cell differentiation via histone deacetylase 3 to modulate intestinal type 2 immunity. Immunity 57, 319–332 (2024).

    Google Scholar 

  48. Gallardo-Becerra, L., Cervantes-Echeverría, M., Cornejo-Granados, F., Vazquez-Morado, L. E. & Ochoa-Leyva, A. Perspectives in searching antimicrobial peptides (AMPs) produced by the microbiota. Microb. Ecol. 87, 8 (2023).

    Google Scholar 

  49. Tomlinson, K. L. et al. Staphylococcus aureus stimulates neutrophil itaconate production that suppresses the oxidative burst. Cell Reports 42, 112064 (2023).

    Google Scholar 

  50. Keskey, R. C. et al. Enterobactin inhibits microbiota-dependent activation of AhR to promote bacterial sepsis in mice. Nat. Microbiol. 10, 388–404 (2025).

    Google Scholar 

  51. Jung, Y. et al. IL-1β in eosinophil-mediated small intestinal homeostasis and IgA production. Mucosal Immunol. 8, 930–942 (2015).

    Google Scholar 

  52. Johnson, K. E. & Wilgus, T. A. Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Adv. Wound Care 3, 647–661 (2014).

    Google Scholar 

  53. Chen, L. et al. TGFB1 induces fetal reprogramming and enhances intestinal regeneration. Cell Stem Cell 30, 1520–1537.e1528 (2023).

    Google Scholar 

  54. Branchett, W. J., Saraiva, M. & O’Garra, A. Regulation of inflammation by Interleukin-10 in the intestinal and respiratory mucosa. Curr. Opin. Immunol. 91, 102495 (2024).

    Google Scholar 

  55. Hegarty, L. M., Jones, G.-R. & Bain, C. C. Macrophages in intestinal homeostasis and inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 20, 538–553 (2023).

    Google Scholar 

  56. Mudter, J. & Neurath, M. F. Il-6 signaling in inflammatory bowel disease: pathophysiological role and clinical relevance. Inflamm. Bowel Dis. 13, 1016–1023 (2007).

    Google Scholar 

  57. Muro, P. et al. The emerging role of oxidative stress in inflammatory bowel disease. Front. Endocrinol. 15, 1390351 (2024).

    Google Scholar 

  58. Zheng, T. et al. Protein kinase p38α signaling in dendritic cells regulates colon inflammation and tumorigenesis. Proc. Natl. Acad. Sci. USA 115, E12313–e12322 (2018).

    Google Scholar 

  59. Tezuka, H. & Ohteki, T. Regulation of IgA production by intestinal dendritic cells and related cells. Front. Immunol. 10, 1891 (2019).

    Google Scholar 

  60. Lin, S. et al. Mucosal immunity–mediated modulation of the gut microbiome by oral delivery of probiotics into Peyer’s patches. Sci. Adv. 7, eabf0677 (2021).

  61. Chen, Z. et al. Foxo1 controls gut homeostasis and commensalism by regulating mucus secretion. J. Exp. Med. 218, e20210324 (2021).

  62. Jiang, H., Chen, C. & Gao, J. Extensive summary of the important roles of indole propionic acid, a gut microbial metabolite in host health and disease. Nutrients 15, https://doi.org/10.3390/nu15010151 (2022).

  63. Matsuzawa, M. et al. The protective role of conjunctival goblet cell mucin sialylation. Nat. Commun. 14, 1417 (2023).

    Google Scholar 

  64. Zhao, T. et al. Impact of structurally diverse polysaccharides on colonic mucin O-glycosylation and gut microbiota. NPJ Biofilms Microbiomes 9, 97 (2023).

    Google Scholar 

  65. Kayama, H., Okumura, R. & Takeda, K. Interaction Between the Microbiota, Epithelia, and Immune Cells in the Intestine. Annu. Rev. Immunol. 38, 23–48 (2020).

    Google Scholar 

  66. Yu, D. et al. MLCK-dependent exchange and actin binding region-dependent anchoring of ZO-1 regulate tight junction barrier function. Proc. Natl. Acad. Sci. USA 107, 8237–8241 (2010).

    Google Scholar 

  67. He, W.-Q. et al. Contributions of myosin light chain kinase to regulation of epithelial paracellular permeability and mucosal homeostasis. Int. J. Mol. Sci. 21, 993 (2020).

    Google Scholar 

  68. Marchiando, A. M. et al. Caveolin-1-dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo. J. Cell Biol. 189, 111–126 (2010).

    Google Scholar 

  69. Fatale, S. et al. Montmorillonite: An advanced material with diverse pharmaceutical and medicinal applications. Ann. Pharm. Fr. 83, 588–604 (2025).

    Google Scholar 

  70. Iliev, I. D. & Cadwell, K. Effects of intestinal fungi and viruses on immune responses and inflammatory bowel diseases. Gastroenterology 160, 1050–1066 (2021).

    Google Scholar 

  71. Li, X. V. et al. Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature 603, 672–678 (2022).

    Google Scholar 

  72. Oh, S., Go, G. W., Mylonakis, E. & Kim, Y. The bacterial signalling molecule indole attenuates the virulence of the fungal pathogen Candida albicans. J. Appl. Microbiol. 113, 622–628 (2012).

    Google Scholar 

  73. Tursi, S. A. et al. Salmonella Typhimurium biofilm disruption by a human antibody that binds a pan-amyloid epitope on curli. Nat. Commun. 11, 1007 (2020).

    Google Scholar 

Download references