Engineering platelets as cancer therapeutics

engineering-platelets-as-cancer-therapeutics
Engineering platelets as cancer therapeutics
  • Cappell, K. M. & Kochenderfer, J. N. Long-term outcomes following CAR T cell therapy: what we know so far. Nat. Rev. Clin. Oncol. 20, 359–371 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brudno, J. N. & Kochenderfer, J. N. Current understanding and management of CAR T cell-associated toxicities. Nat. Rev. Clin. Oncol. 21, 501–521 (2024).

    PubMed  PubMed Central  Google Scholar 

  • Myers, J. A. & Miller, J. S. Exploring the NK cell platform for cancer immunotherapy. Nat. Rev. Clin. Oncol. 18, 85–100 (2021).

    PubMed  Google Scholar 

  • D’Avanzo, C., Blaeschke, F., Lysandrou, M., Ingelfinger, F. & Zeiser, R. Advances in cell therapy: progress and challenges in hematological and solid tumors. Trends Pharmacol. Sci. 45, 1119–1134 (2024).

    PubMed  Google Scholar 

  • Tarannum, M. et al. Engineering innate immune cells for cancer immunotherapy. Nat. Biotechnol. 43, 516–533 (2025).

    CAS  PubMed  Google Scholar 

  • Leung, J., Cau, M. F. & Kastrup, C. J. Emerging gene therapies for enhancing the hemostatic potential of platelets. Transfusion 61, S275–S285 (2021).

    PubMed  Google Scholar 

  • van der Meijden, P. E. J. & Heemskerk, J. W. M. Platelet biology and functions: new concepts and clinical perspectives. Nat. Rev. Cardiol. 16, 166–179 (2019).

    PubMed  Google Scholar 

  • Haemmerle, M., Stone, R. L., Menter, D. G., Afshar-Kharghan, V. & Sood, A. K. the platelet lifeline to cancer: challenges and opportunities. Cancer Cell 33, 965–983 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, X. R., Yousef, G. M. & Ni, H. Cancer and platelet crosstalk: opportunities and challenges for aspirin and other antiplatelet agents. Blood 131, 1777–1789 (2018).

    CAS  PubMed  Google Scholar 

  • Gordon, M. S. et al. A phase I trial of recombinant human interleukin-6 in patients with myelodysplastic syndromes and thrombocytopenia. Blood 85, 3066–3076 (1995).

    CAS  PubMed  Google Scholar 

  • Machlus, K. R. et al. CCL5 derived from platelets increases megakaryocyte proplatelet formation. Blood 127, 921–926 (2016).

    CAS  PubMed  Google Scholar 

  • Contursi, A. et al. Biology and pharmacology of platelet-type 12-lipoxygenase in platelets, cancer cells, and their crosstalk. Biochem. Pharmacol. 205, 115252 (2022).

    CAS  PubMed  Google Scholar 

  • Martling, A. et al. Low-dose aspirin for PI3K-altered localized colorectal cancer. N. Engl. J. Med. 393, 1051–1064 (2025).

    PubMed  Google Scholar 

  • Lucotti, S. et al. Aspirin blocks formation of metastatic intravascular niches by inhibiting platelet-derived COX-1/thromboxane A2. J. Clin. Invest. 129, 1845–1862 (2019).

    PubMed  PubMed Central  Google Scholar 

  • Yang, J. et al. Aspirin prevents metastasis by limiting platelet TXA(2) suppression of T cell immunity. Nature 640, 1052–1061 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benoy, I. et al. Serum interleukin 6, plasma VEGF, serum VEGF, and VEGF platelet load in breast cancer patients. Clin. Breast Cancer 2, 311–315 (2002).

    CAS  PubMed  Google Scholar 

  • Muller, K., Gilbertz, K. P. & Meineke, V. Serotonin and ionizing radiation synergistically affect proliferation and adhesion molecule expression of malignant melanoma cells. J. Dermatol. Sci. 68, 89–98 (2012).

    PubMed  Google Scholar 

  • Ma, C. et al. Platelets control liver tumor growth through P2Y12-dependent CD40L release in NAFLD. Cancer Cell 40, 986–998.e5 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michael, J. V. et al. Platelet microparticles infiltrating solid tumors transfer miRNAs that suppress tumor growth. Blood 130, 567–580 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sier, V. Q. et al. Cell-based tracers as trojan horses for image-guided surgery. Int. J. Mol. Sci. 22, 755 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, Y., Hu, Q., Jiang, C. & Gu, Z. Platelet for drug delivery. Curr. Opin. Biotechnol. 58, 81–91 (2019).

    CAS  PubMed  Google Scholar 

  • Wang, C. et al. In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy. Nat. Biomed. Eng. 1, 0011 (2017).

    CAS  Google Scholar 

  • Irvine, D. J., Maus, M. V., Mooney, D. J. & Wong, W. W. The future of engineered immune cell therapies. Science 378, 853–858 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y. et al. Cell–drug conjugates. Nat. Biomed. Eng. 8, 1347–1365 (2024).

    PubMed  PubMed Central  Google Scholar 

  • McPhedran, S. J., Carleton, G. A. & Lum, J. J. Metabolic engineering for optimized CAR-T cell therapy. Nat. Metab. 6, 396–408 (2024).

    PubMed  Google Scholar 

  • Li, Z., Wang, Y., Gu, Z. & Hu, Q. Engineering cells for therapy and diagnosis. Nat. Rev. Bioeng. 2, 770–784 (2024).

    CAS  Google Scholar 

  • Martin, J. F., Kristensen, S. D., Mathur, A., Grove, E. L. & Choudry, F. A. The causal role of megakaryocyte–platelet hyperactivity in acute coronary syndromes. Nat. Rev. Cardiol. 9, 658–670 (2012).

    CAS  PubMed  Google Scholar 

  • Heijnen, H. F. G. & Korporaal, S. J. A. in Platelets in Thrombotic and Non-Thrombotic Disorders: Pathophysiology, Pharmacology and Therapeutics: an Update (eds Gresele, P. et al.) 21–37 (Springer, 2017).

  • Franco, A. T., Corken, A. & Ware, J. Platelets at the interface of thrombosis, inflammation, and cancer. Blood 126, 582–588 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baaten, C., Nagy, M., Bergmeier, W., Spronk, H. M. H. & van der Meijden, P. E. J. Platelet biology and function: plaque erosion vs. rupture. Eur. Heart J. 45, 18–31 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, D. et al. RBCs regulate platelet function and hemostasis under shear conditions through biophysical and biochemical means. Blood 144, 1521–1531 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues, M., Kosaric, N., Bonham, C. A. & Gurtner, G. C. Wound healing: a cellular perspective. Physiol. Rev. 99, 665–706 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buka, R. J. et al. PF4 activates the c-Mpl–Jak2 pathway in platelets. Blood 143, 64–69 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koupenova, M., Livada, A. C. & Morrell, C. N. Platelet and megakaryocyte roles in innate and adaptive immunity. Circ. Res. 130, 288–308 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levin, J. & Conley, C. L. Thrombocytosis associated with malignant disease. Arch. Intern. Med. 114, 497–500 (1964).

    CAS  PubMed  Google Scholar 

  • Khorana, A. A., Francis, C. W., Culakova, E., Kuderer, N. M. & Lyman, G. H. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J. Thromb. Haemost. 5, 632–634 (2007).

    CAS  PubMed  Google Scholar 

  • Sallah, S., Wan, J. Y. & Nguyen, N. P. Venous thrombosis in patients with solid tumors: determination of frequency and characteristics. Thromb. Haemost. 87, 575–579 (2002).

    CAS  PubMed  Google Scholar 

  • Stein, P. D. et al. Incidence of venous thromboembolism in patients hospitalized with cancer. Am. J. Med. 119, 60–68 (2006).

    PubMed  Google Scholar 

  • Cho, M. S. et al. Platelets increase the proliferation of ovarian cancer cells. Blood 120, 4869–4872 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, Q. et al. Role of platelet-derived TGFβ1 in the progression of ovarian cancer. Clin. Cancer Res. 23, 5611–5621 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Labelle, M., Begum, S. & Hynes, R. O. Direct signaling between platelets and cancer cells induces an epithelial–mesenchymal-like transition and promotes metastasis. Cancer Cell 20, 576–590 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ho-Tin-Noe, B., Goerge, T., Cifuni, S. M., Duerschmied, D. & Wagner, D. D. Platelet granule secretion continuously prevents intratumor hemorrhage. Cancer Res. 68, 6851–6858 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Palma, M., Biziato, D. & Petrova, T. V. Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer 17, 457–474 (2017).

    PubMed  Google Scholar 

  • Verheul, H. M. et al. Platelet and coagulation activation with vascular endothelial growth factor generation in soft tissue sarcomas. Clin. Cancer Res. 6, 166–171 (2000).

    CAS  PubMed  Google Scholar 

  • Janowska-Wieczorek, A., Marquez-Curtis, L. A., Wysoczynski, M. & Ratajczak, M. Z. Enhancing effect of platelet-derived microvesicles on the invasive potential of breast cancer cells. Transfusion 46, 1199–1209 (2006).

    PubMed  Google Scholar 

  • Janowska-Wieczorek, A. et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int. J. Cancer 113, 752–760 (2005).

    CAS  PubMed  Google Scholar 

  • Liang, H. et al. MicroRNA-223 delivered by platelet-derived microvesicles promotes lung cancer cell invasion via targeting tumor suppressor EPB41L3. Mol. Cancer 14, 58 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Helley, D. et al. Platelet microparticles: a potential predictive factor of survival in hormone-refractory prostate cancer patients treated with docetaxel-based chemotherapy. Eur. Urol. 56, 479–484 (2009).

    CAS  PubMed  Google Scholar 

  • Kim, H. K. et al. Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor. Eur. J. Cancer 39, 184–191 (2003).

    CAS  PubMed  Google Scholar 

  • Cooke, N. M. et al. Increased platelet reactivity in patients with late-stage metastatic cancer. Cancer Med. 2, 564–570 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolny-Rokicka, E., Tukiendorf, A., Wydmański, J. & Zembroń-Łacny, A. The potential of the quick detection of selectins using raman spectroscopy to discriminate lung cancer patients from healthy subjects. J. Spectrosc. 2018, 7843208 (2018).

    Google Scholar 

  • Lesurtel, M. et al. Platelet-derived serotonin mediates liver regeneration. Science 312, 104–107 (2006).

    CAS  PubMed  Google Scholar 

  • Nocito, A. et al. Serotonin regulates macrophage-mediated angiogenesis in a mouse model of colon cancer allografts. Cancer Res. 68, 5152–5158 (2008).

    CAS  PubMed  Google Scholar 

  • Sibilano, M. et al. Platelet-derived miR-126-3p directly targets AKT2 and exerts anti-tumor effects in breast cancer cells: further insights in platelet-cancer interplay. Int. J. Mol. Sci. 23, 5484 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lazar, S. & Goldfinger, L. E. Platelets and extracellular vesicles and their cross talk with cancer. Blood 137, 3192–3200 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsoi, K. K. F., Ho, J. M. W., Chan, F. C. H. & Sung, J. J. Y. Long-term use of low-dose aspirin for cancer prevention: a 10-year population cohort study in Hong Kong. Int. J. Cancer 145, 267–273 (2019).

    CAS  PubMed  Google Scholar 

  • McNeil, J. J. et al. Effect of aspirin on cancer incidence and mortality in older adults. J. Natl Cancer Inst. 113, 258–265 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • McNeil, J. J. et al. Effect of aspirin on all-cause mortality in the healthy elderly. N. Engl. J. Med. 379, 1519–1528 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Floyd, J. S. & Serebruany, V. L. Prasugrel as a potential cancer promoter: review of the unpublished data. Arch. Intern. Med. 170, 1078–1080 (2010).

    CAS  PubMed  Google Scholar 

  • Wiviott, S. D. et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 357, 2001–2015 (2007).

    CAS  PubMed  Google Scholar 

  • Morrow, D. A. et al. Vorapaxar in the secondary prevention of atherothrombotic events. N. Engl. J. Med. 366, 1404–1413 (2012).

    CAS  PubMed  Google Scholar 

  • Wang, Y., Li, Z., Mo, F., Gu, Z. & Hu, Q. Engineered platelets: advocates for tumor immunotherapy. Nano Today 40, 101281 (2021).

    CAS  Google Scholar 

  • Lv, Y., Wei, W. & Ma, G. Recent advances in platelet engineering for anti-cancer therapies. Particuology 64, 2–13 (2022).

    CAS  Google Scholar 

  • Hu, Q. et al. Inhibition of post-surgery tumour recurrence via a hydrogel releasing CAR-T cells and anti-PDL1-conjugated platelets. Nat. Biomed. Eng. 5, 1038–1047 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, Q. et al. Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy. Nat. Biomed. Eng. 2, 831–840 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yap, M. L. et al. Activated platelets in the tumor microenvironment for targeting of antibody-drug conjugates to tumors and metastases. Theranostics 9, 1154–1169 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Chen, J. & Shi, H. Platelets: novel biomaterials for cancer diagnosis and therapeutic delivery. MedComm – Biomater. Appl. 4, e70010 (2025).

    CAS  Google Scholar 

  • Li, Z. et al. Cell-based delivery systems: emerging carriers for immunotherapy. Adv. Funct. Mater. 31, 2100088 (2021).

    CAS  Google Scholar 

  • Sarkar, S., Alam, M. A., Shaw, J. & Dasgupta, A. K. Drug delivery using platelet cancer cell interaction. Pharm. Res. 30, 2785–2794 (2013).

    CAS  PubMed  Google Scholar 

  • Ortiz-Otero, N., Mohamed, Z. & King, M. R. in Biomechanics in Oncology (eds Dong, C. et al.) 235–251 (Springer, 2018).

  • Zhang, Y. et al. A platelet intelligent vehicle with navigation for cancer photothermal-chemotherapy. ACS Nano 16, 6359–6371 (2022).

    CAS  PubMed  Google Scholar 

  • Tang, S. et al. Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Sci. Robot. 5, eaba6137 (2020).

    PubMed  Google Scholar 

  • Zheng, Q. et al. The recent progress on metal-organic frameworks for phototherapy. Chem. Soc. Rev. 50, 5086–5125 (2021).

    CAS  PubMed  Google Scholar 

  • Stubelius, A., Lee, S. & Almutairi, A. The chemistry of boronic acids in nanomaterials for drug delivery. Acc. Chem. Res. 52, 3108–3119 (2019).

    CAS  PubMed  Google Scholar 

  • Yan, J. et al. Platelet pharmacytes for the hierarchical amplification of antitumor immunity in response to self-generated immune signals. Adv. Mater. 34, e2109517 (2022).

    PubMed  Google Scholar 

  • Li, H. et al. Disrupting tumour vasculature and recruitment of aPDL1-loaded platelets control tumour metastasis. Nat. Commun. 12, 2773 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, Q. et al. Bioengineered platelets combining chemotherapy and immunotherapy for postsurgical melanoma treatment: internal core-loaded doxorubicin and external surface-anchored anti-PD-L1 antibody backpacks. Nano Lett. 22, 3141–3150 (2022).

    CAS  PubMed  Google Scholar 

  • Wang, Y. et al. Active recruitment of anti-PD-1-conjugated platelets through tumor-selective thrombosis for enhanced anticancer immunotherapy. Sci. Adv. 9, eadf6854 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Y., Pal, S. & Hu, Q. Cell-based relay delivery strategy in biomedical applications. Adv. Drug Deliv. Rev. 198, 114871 (2023).

    CAS  PubMed  Google Scholar 

  • Fan, X. et al. Surface-anchored tumor microenvironment-responsive protein nanogel-platelet system for cytosolic delivery of therapeutic protein in the post-surgical cancer treatment. Acta Biomater. 154, 412–423 (2022).

    CAS  PubMed  Google Scholar 

  • Wang, S. et al. Engineered platelets-based drug delivery platform for targeted thrombolysis. Acta Pharm. Sin. B 12, 2000–2013 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, L., Feng, W., Mao, Y., Chen, Y. & Zhang, X. Nanoengineered sonosensitive platelets for synergistically augmented sonodynamic tumor therapy by glutamine deprivation and cascading thrombosis. Bioact. Mater. 24, 26–36 (2023).

    CAS  PubMed  Google Scholar 

  • Fuentes, R. E. et al. A chimeric platelet-targeted urokinase prodrug selectively blocks new thrombus formation. J. Clin. Invest. 126, 483–494 (2016).

    PubMed  PubMed Central  Google Scholar 

  • Ding, Y. F. et al. Supramolecularly functionalized platelets for rapid control of hemorrhage. Acta Biomater. 149, 248–257 (2022).

    CAS  PubMed  Google Scholar 

  • Shen, D. et al. Antibody-armed platelets for the regenerative targeting of endogenous stem cells. Nano Lett. 19, 1883–1891 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, J. et al. Glucose-decorated engineering platelets for active and precise tumor-targeted drug delivery. Biomater. Sci. 11, 3965–3975 (2023).

    CAS  PubMed  Google Scholar 

  • Yang, Y. et al. T cell-mimicking platelet-drug conjugates. Matter 6, 2340–2355 (2023).

    CAS  Google Scholar 

  • Gao, Y. et al. Engineering platelets with PDL1 antibodies and iron oxide nanoparticles for postsurgical cancer immunotherapy. ACS Appl. Bio Mater. 6, 257–266 (2023).

    CAS  PubMed  Google Scholar 

  • Hansen, C. E. et al. Platelet-microcapsule hybrids leverage contractile force for targeted delivery of hemostatic agents. ACS Nano 11, 5579–5589 (2017).

    CAS  PubMed  Google Scholar 

  • Stephan, M. T., Moon, J. J., Um, S. H., Bershteyn, A. & Irvine, D. J. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 16, 1035–1041 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, R., Li, Y., Xu, A., King, B. & Ruan, K. H. Reprogramming megakaryocytes for controlled release of platelet-like particles carrying a single-chain thromboxane A2 receptor-g-protein complex with therapeutic potential. Cells 12, 2775 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, Y. et al. Bioengineering platelets presenting PD-L1, galectin-9 and BTLA to ameliorate type 1 diabetes. Adv. Sci. 12, e2501139 (2025).

    Google Scholar 

  • He, J. et al. Platelet backpacking nanoparticles based on bacterial outer membrane vesicles enhanced photothermal-immune anti-tumor therapy. Nanoscale 17, 1510–1523 (2025).

    CAS  PubMed  Google Scholar 

  • Feng, Y. et al. Engineering supramolecular peptide nanofibers for in vivo platelet-hitchhiking beyond ligand-receptor recognition. Sci. Adv. 10, eadq2072 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y. T., Nishikawa, T. & Kaneda, Y. Platelet-cytokine complex suppresses tumour growth by exploiting intratumoural thrombin-dependent platelet aggregation. Sci. Rep. 6, 25077 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, H. Z. et al. Targeted photodynamic therapy of glioblastoma mediated by platelets with photo-controlled release property. Biomaterials 290, 121833 (2022).

    CAS  PubMed  Google Scholar 

  • Cacic, D., Hervig, T. & Reikvam, H. Platelets for advanced drug delivery in cancer. Expert. Opin. Drug Deliv. 20, 673–688 (2023).

    CAS  PubMed  Google Scholar 

  • Xu, P. et al. Doxorubicin-loaded platelets conjugated with anti-CD22 mAbs: a novel targeted delivery system for lymphoma treatment with cardiopulmonary avoidance. Oncotarget 8, 58322–58337 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Lu, Q. et al. Long-acting bioengineered platelets with internal doxorubicin loaded and external quercetin liposomes anchored for post-surgical tumor therapy. J. Control. Rel. 381, 113546 (2025).

    CAS  Google Scholar 

  • Dong, H., Gao, M., Lu, L., Gui, R. & Fu, Y. Doxorubicin-loaded platelet decoys for enhanced chemoimmunotherapy against triple-negative breast cancer in mice model. Int. J. Nanomed. 18, 3577–3593 (2023).

    CAS  Google Scholar 

  • Xu, P. et al. Doxorubicin-loaded platelets as a smart drug delivery system: an improved therapy for lymphoma. Sci. Rep. 7, 42632 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, Y. W. et al. Clinical-grade cryopreserved doxorubicin-loaded platelets: role of cancer cells and platelet extracellular vesicles activation loop. J. Biomed. Sci. 27, 45 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka, H. et al. Treatment of hepatocellular carcinoma with autologous platelets encapsulating sorafenib or lenvatinib: a novel therapy exploiting tumor–platelet interactions. Int. J. Cancer 150, 1640–1653 (2022).

    CAS  PubMed  Google Scholar 

  • Rao, L. et al. Platelet-facilitated photothermal therapy of head and neck squamous cell carcinoma. Angew. Chem. Int. Ed. Engl. 57, 986–991 (2018).

    CAS  PubMed  Google Scholar 

  • Nishikawa, T., Tung, L. Y. & Kaneda, Y. Systemic administration of platelets incorporating inactivated Sendai virus eradicates melanoma in mice. Mol. Ther. 22, 2046–2055 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abdelgawwad, M. S. et al. Transfusion of platelets loaded with recombinant ADAMTS13 (A Disintegrin and Metalloprotease With Thrombospondin Type 1 Repeats-13) is efficacious for inhibiting arterial thrombosis associated with thrombotic thrombocytopenic purpura. Arterioscler. Thromb. Vasc. Biol. 38, 2731–2743 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lv, Y. et al. Near-infrared light-triggered platelet arsenal for combined photothermal-immunotherapy against cancer. Sci. Adv. 7, eabd7614 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, Z. et al. Platelet-drug conjugates engineered via one-step fusion approach for metastatic and postoperative cancer treatment. Angew. Chem. Int. Ed. Engl. 63, e202403541 (2024).

    CAS  PubMed  Google Scholar 

  • Morales-Pacheco, M. et al. The role of platelets in cancer: from their influence on tumor progression to their potential use in liquid biopsy. Biomarker Res. 13, 27 (2025).

    Google Scholar 

  • Geranpayehvaghei, M. et al. Targeting delivery of platelets inhibitor to prevent tumor metastasis. Bioconjug. Chem. 30, 2349–2357 (2019).

    CAS  PubMed  Google Scholar 

  • Demers, M. & Wagner, D. D. Targeting platelet function to improve drug delivery. Oncoimmunology 1, 100–102 (2012).

    PubMed  PubMed Central  Google Scholar 

  • Flaumenhaft, R., Mairuhu, A. T. & Italiano, J. E. Platelet- and megakaryocyte-derived microparticles. Semin. Thromb. Hemost. 36, 881–887 (2010).

    PubMed  Google Scholar 

  • Heijnen, H. F., Schiel, A. E., Fijnheer, R., Geuze, H. J. & Sixma, J. J. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and α-granules. Blood 94, 3791–3799 (1999).

    CAS  PubMed  Google Scholar 

  • Tao, S. C., Guo, S. C. & Zhang, C. Q. Platelet-derived extracellular vesicles: an emerging therapeutic approach. Int. J. Biol. Sci. 13, 828–834 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soleymani, S., Yari, F., Bolhassani, A. & Bakhshandeh, H. Platelet microparticles: an effective delivery system for anti-viral drugs. J. Drug Deliv. Sci. Technol. 51, 290–296 (2019).

    CAS  Google Scholar 

  • Gamonet, C. et al. Processing methods and storage duration impact extracellular vesicle counts in red blood cell units. Blood Adv. 4, 5527–5539 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao, C. & Wang, C. Platelet-derived extracellular vesicles for drug delivery. Biomater. Sci. 11, 5758–5768 (2023).

    CAS  PubMed  Google Scholar 

  • Meliciano, A., Salvador, D., Mendonca, P., Louro, A. F. & Serra, M. Clinically expired platelet concentrates as a source of extracellular vesicles for targeted anti-cancer drug delivery. Pharmaceutics 15, 953 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kailashiya, J., Gupta, V. & Dash, D. Engineered human platelet-derived microparticles as natural vectors for targeted drug delivery. Oncotarget 10, 5835–5846 (2019).

    PubMed  PubMed Central  Google Scholar 

  • Ning, S. et al. Platelet-derived exosomes hybrid liposomes facilitate uninterrupted singlet oxygen generation to enhance breast cancer immunotherapy. Cell Rep. Phys. Sci. 4, 101505 (2023).

    CAS  Google Scholar 

  • Wang, H. et al. Platelet–membrane–biomimetic nanoparticles for targeted antitumor drug delivery. J. Nanobiotechnol. 17, 60 (2019).

    Google Scholar 

  • Fang, R. H., Gao, W. & Zhang, L. Targeting drugs to tumours using cell membrane-coated nanoparticles. Nat. Rev. Clin. Oncol. 20, 33–48 (2023).

    PubMed  Google Scholar 

  • Hu, Q. et al. Anticancer platelet-mimicking nanovehicles. Adv. Mater. 27, 7043–7050 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu, Z. & Hu, Q. Platelet membrane-coated drug delivery system. US patent 10,363,226 (30 July 2019).

  • Hu, Q. et al. Engineered nanoplatelets for enhanced treatment of multiple myeloma and thrombus. Adv. Mater. 28, 9573–9580 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mei, D. et al. Platelet membrane-cloaked paclitaxel-nanocrystals augment postoperative chemotherapeutical efficacy. J. Control. Rel. 324, 341–353 (2020).

    CAS  Google Scholar 

  • Zhang, M. et al. Platelet-mimicking biotaxis targeting vasculature-disrupted tumors for cascade amplification of hypoxia-sensitive therapy. ACS Nano 13, 14230–14240 (2019).

    CAS  PubMed  Google Scholar 

  • Li, J. et al. Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles. Biomaterials 76, 52–65 (2016).

    CAS  PubMed  Google Scholar 

  • Bahmani, B. et al. Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors. Nat. Commun. 12, 1999 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hubbell, J. A. & Langer, R. Translating materials design to the clinic. Nat. Mater. 12, 963–966 (2013).

    CAS  PubMed  Google Scholar 

  • Danhier, F. To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Control. Rel. 244, 108–121 (2016).

    CAS  Google Scholar 

  • Quader, S. & Kataoka, K. Nanomaterial-enabled cancer therapy. Mol. Ther. 25, 1501–1513 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenblum, D., Joshi, N., Tao, W., Karp, J. M. & Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 9, 1410 (2018).

    PubMed  PubMed Central  Google Scholar 

  • Au, J. L. S., Jang, S. H. & Wientjes, M. G. Clinical aspects of drug delivery to tumors. J. Control. Rel. 78, 81–95 (2002).

    CAS  Google Scholar 

  • Minchinton, A. I. & Tannock, I. F. Drug penetration in solid tumours. Nat. Rev. Cancer 6, 583–592 (2006).

    CAS  PubMed  Google Scholar 

  • Wang, S. et al. Drug targeting via platelet membrane-coated nanoparticles. Small Struct. 1, 2000018 (2020).

    PubMed  PubMed Central  Google Scholar 

  • Dash, P., Piras, A. M. & Dash, M. Cell membrane coated nanocarriers — an efficient biomimetic platform for targeted therapy. J. Control. Rel. 327, 546–570 (2020).

    CAS  Google Scholar 

  • Schiffer, C. A. et al. Platelet transfusion for patients with cancer: American Society of Clinical Oncology clinical practice guideline update. J. Clin. Oncol. 36, 283–299 (2018).

    PubMed  Google Scholar 

  • Kogler, V. J. et al. Platelet dysfunction reversal with cold-stored vs room temperature-stored platelet transfusions. Blood 143, 2073–2088 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haemmerle, M. et al. FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal. J. Clin. Invest. 126, 1885–1896 (2016).

    PubMed  PubMed Central  Google Scholar 

  • Rachidi, S. et al. Platelets subvert T cell immunity against cancer via GARP–TGFβ axis. Sci. Immunol. 2, eaai7911 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Braun, A., Anders, H. J., Gudermann, T. & Mammadova-Bach, E. Platelet-cancer interplay: molecular mechanisms and new therapeutic avenues. Front. Oncol. 11, 665534 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J., Sharkey, C. C., Wun, B., Liesveld, J. L. & King, M. R. Genetic engineering of platelets to neutralize circulating tumor cells. J. Control. Rel. 228, 38–47 (2016).

    CAS  Google Scholar 

  • Zhang, X. et al. Engineering PD-1-presenting platelets for cancer immunotherapy. Nano Lett. 18, 5716–5725 (2018).

    CAS  PubMed  Google Scholar 

  • Strong, C. et al. Genetic engineering of transfusable platelets with mRNA-lipid nanoparticles is compatible with blood banking practices. Blood 144, 2223–2236 (2024).

    CAS  PubMed  Google Scholar 

  • Leung, J. et al. Genetically engineered transfusable platelets using mRNA lipid nanoparticles. Sci. Adv. 9, eadi0508 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee, S., Kon, E., Sharma, P. & Peer, D. Endosomal escape: a bottleneck for LNP-mediated therapeutics. Proc. Natl Acad. Sci. USA 121, e2307800120 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kong, H. et al. An antifouling membrane-fusogenic liposome for effective intracellular delivery in vivo. Nat. Commun. 15, 4267 (2024).

    PubMed  PubMed Central  Google Scholar 

  • Novakowski, S., Jiang, K., Prakash, G. & Kastrup, C. Delivery of mRNA to platelets using lipid nanoparticles. Sci. Rep. 9, 552 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strilchuk, A. W. et al. Sustained depletion of FXIII-A by inducing acquired FXIII-B deficiency. Blood 136, 2946–2954 (2020).

    PubMed  PubMed Central  Google Scholar 

  • Hong, W. et al. Transfection of human platelets with short interfering RNA. Clin. Transl. Sci. 4, 180–182 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lazar, S., Wurtzel, J. G. T., Chen, X., Ma, P. & Goldfinger, L. E. High-efficiency unassisted transfection of platelets with naked double-stranded miRNAs modulates signal-activated translation and platelet function. Platelets 32, 794–806 (2021).

    CAS  PubMed  Google Scholar 

  • Wang, Y. et al. Chemically engineering cells for precision medicine. Chem. Soc. Rev. 52, 1068–1102 (2023).

    CAS  PubMed  Google Scholar 

  • Hoffmeister, K. M. & Falet, H. Platelet clearance by the hepatic ashwell-morrell receptor: mechanisms and biological significance. Thromb. Res. 141 (Suppl. 2), S68–S72 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reusswig, F., An, O. & Deppermann, C. Platelet life cycle during aging: function, production and clearance. Platelets 35, 2433750 (2024).

    PubMed  Google Scholar 

  • Li, J. et al. Desialylated platelet clearance in the liver is a novel mechanism of systemic immunosuppression. Research 6, 0236 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papa, A. L. et al. Platelet decoys inhibit thrombosis and prevent metastatic tumor formation in preclinical models. Sci. Transl. Med. 11, eaau5898 (2019).

    CAS  PubMed  Google Scholar 

  • Tamura, T. & Hamachi, I. N-Acyl-N-alkyl/aryl sulfonamide chemistry assisted by proximity for modification and covalent inhibition of endogenous proteins in living systems. Acc. Chem. Res. 58, 87–100 (2025).

    CAS  PubMed  Google Scholar 

  • Chen, Y. et al. Engineered platelets as targeted protein degraders and application to breast cancer models. Nat. Biotechnol. 43, 1800–1812 (2024).

    PubMed  PubMed Central  Google Scholar 

  • Tozzi, L. et al. Multi-channel silk sponge mimicking bone marrow vascular niche for platelet production. Biomaterials 178, 122–133 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Avanzi, M. P. et al. A novel bioreactor and culture method drives high yields of platelets from stem cells. Transfusion 56, 170–178 (2016).

    CAS  PubMed  Google Scholar 

  • Thon, J. N. et al. Platelet bioreactor-on-a-chip. Blood 124, 1857–1867 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ito, Y. et al. Turbulence activates platelet biogenesis to enable clinical scale ex vivo production. Cell 174, 636–648.e18 (2018).

    CAS  PubMed  Google Scholar 

  • Sugimoto, N. et al. iPLAT1: the first-in-human clinical trial of iPSC-derived platelets as a phase 1 autologous transfusion study. Blood 140, 2398–2402 (2022).

    CAS  PubMed  Google Scholar 

  • Sugimoto, N. & Eto, K. Ex vivo production of platelets from iPSCs: the iPLAT1 study and beyond. Hemasphere 7, e884 (2023).

    PubMed  PubMed Central  Google Scholar 

  • Schut, A. M., Kirschbaum, M., Adelmeijer, J., de Groot, P. G. & Lisman, T. In vitro uptake of recombinant factor VIIa by megakaryocytes with subsequent production of platelets containing functionally active drug. Br. J. Haematol. 178, 482–486 (2017).

    PubMed  Google Scholar 

  • Wilcox, D. A. et al. Induction of megakaryocytes to synthesize and store a releasable pool of human factor VIII. J. Thromb. Haemost. 1, 2477–2489 (2003).

    CAS  PubMed  Google Scholar 

  • Miao, H. Z. et al. Bioengineering of coagulation factor VIII for improved secretion. Blood 103, 3412–3419 (2004).

    CAS  PubMed  Google Scholar 

  • Figueiredo, C. et al. Generation of HLA-deficient platelets from hematopoietic progenitor cells. Transfusion 50, 1690–1701 (2010).

    CAS  PubMed  Google Scholar 

  • Suzuki, D. et al. iPSC-derived platelets depleted of HLA class I are inert to anti-HLA class I and natural killer cell immunity. Stem Cell Rep. 14, 49–59 (2020).

    CAS  Google Scholar 

  • Fuentes, R. et al. Infusion of mature megakaryocytes into mice yields functional platelets. J. Clin. Invest. 120, 3917–3922 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel, A. et al. Pre-clinical development of a cryopreservable megakaryocytic cell product capable of sustained platelet production in mice. Transfusion 59, 3698–3713 (2019).

    CAS  PubMed  Google Scholar 

  • Kim, H. et al. Studies of infused megakaryocytes into mice support a “catch-and-release” model of pulmonary-centric thrombopoiesis. Preprint at bioRxiv https://doi.org/10.1101/2024.06.04.597316 (2024).

  • Wang, X. et al. Intraosseous delivery of lentiviral vectors targeting factor VIII expression in platelets corrects murine hemophilia A. Mol. Ther. 23, 617–626 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X. et al. Enhancing therapeutic efficacy of in vivo platelet-targeted gene therapy in hemophilia a mice. Blood Adv. 4, 5722–5734 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Basha, G. et al. Lipid nanoparticle delivery of siRNA to osteocytes leads to effective silencing of SOST and inhibition of sclerostin in vivo. Mol. Ther. Nucleic Acids 5, e363 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sago, C. D. et al. Nanoparticles that deliver RNA to bone marrow identified by in vivo directed evolution. J. Am. Chem. Soc. 140, 17095–17105 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Labrosse, R. et al. Outcomes of hematopoietic stem cell gene therapy for Wiskott–Aldrich syndrome. Blood 142, 1281–1296 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gratwohl, A. et al. Hematopoietic stem cell transplantation for hematological malignancies in Europe. Leukemia 17, 941–959 (2003).

    CAS  PubMed  Google Scholar 

  • Wojtukiewicz, M. Z., Sierko, E., Hempel, D., Tucker, S. C. & Honn, K. V. Platelets and cancer angiogenesis nexus. Cancer Metastasis Rev. 36, 249–262 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borsig, L. et al. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc. Natl Acad. Sci. USA 98, 3352–3357 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karpatkin, S., Pearlstein, E., Ambrogio, C. & Coller, B. S. Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J. Clin. Invest. 81, 1012–1019 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herrmann, I. K., Wood, M. J. A. & Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 16, 748–759 (2021).

    CAS  PubMed  Google Scholar 

  • Propper, D. J. & Balkwill, F. R. Harnessing cytokines and chemokines for cancer therapy. Nat. Rev. Clin. Oncol. 19, 237–253 (2022).

    CAS  PubMed  Google Scholar 

  • Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic: an update. Bioeng. Transl. Med. 4, e10143 (2019).

    PubMed  PubMed Central  Google Scholar 

  • Looby, M. et al. Application of quality by design principles to the development and technology transfer of a major process improvement for the manufacture of a recombinant protein. Biotechnol. Prog. 27, 1718–1729 (2011).

    CAS  PubMed  Google Scholar 

  • Kim, Y. J. et al. Quality by design characterization of the perfusion culture process for recombinant FVIII. Biologicals 59, 37–46 (2019).

    CAS  PubMed  Google Scholar 

  • Quach, M. E., Chen, W. & Li, R. Mechanisms of platelet clearance and translation to improve platelet storage. Blood 131, 1512–1521 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cesar, J. M. & Vecino, A. M. Survival and function of transfused platelets. studies in two patients with congenital deficiencies of platelet membrane glycoproteins. Platelets 20, 158–162 (2009).

    CAS  PubMed  Google Scholar 

  • Rank, A. et al. Clearance of platelet microparticles in vivo. Platelets 22, 111–116 (2011).

    CAS  PubMed  Google Scholar 

  • Bashor, C. J., Hilton, I. B., Bandukwala, H., Smith, D. M. & Veiseh, O. Engineering the next generation of cell-based therapeutics. Nat. Rev. Drug Discov. 21, 655–675 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Solves Alcaina, P. Platelet transfusion: and update on challenges and outcomes. J. Blood Med. 11, 19–26 (2020).

    PubMed  PubMed Central  Google Scholar 

  • Manduzio, P. Transfusion-associated graft-versus-host disease: a concise review. Hematol. Rep. 10, 7724 (2018).

    PubMed  PubMed Central  Google Scholar 

  • Leitner, G. C. et al. Influence of human platelet antigen match on the success of stem cell transplantation after myeloablative conditioning. Bone Marrow Transpl. 32, 821–824 (2003).

    CAS  Google Scholar 

  • Duquesnoy, R. J., Filip, D. J., Rodey, G. E., Rimm, A. A. & Aster, R. H. Successful transfusion of platelets “mismatched” for HLA antigens to alloimmunized thrombocytopenic patients. Am. J. Hematol. 2, 219–226 (1977).

    CAS  PubMed  Google Scholar 

  • Ward, S. R. et al. 984-30 use of electroporated platelets as a novel drug delivery system in preventing complications of coronary angioplasty. J. Am. Coll. Cardiol. 25, 303A–304A (1995).

    Google Scholar