References
-
Walsh, G. & Walsh, E. Biopharmaceutical benchmarks 2022. Nat. Biotechnol. 40, 1722–1760 (2022).
-
Pereira, S., Kildegaard, H. F. & Andersen, M. R. Impact of CHO metabolism on cell growth and protein production: an overview of toxic and inhibiting metabolites and nutrients. Biotechnol. J. 13, 1–13 (2018).
-
Shin, S. W., Kyeong, M. & Lee, J. S. Next-generation cell engineering platform for improving recombinant protein production in mammalian cells. In Cell Culture Engineering and Technology. Cell Engineering, vol 10 (ed. Pörtner, R.) 189–224 https://doi.org/10.1007/978-3-030-79871-0_7 (Springer, 2021).
-
Hong, J. K., Lakshmanan, M., Goudar, C. & Lee, D.-Y. Towards next generation CHO cell line development and engineering by systems approaches. Curr. Opin. Chem. Eng. 22, 1–10 (2018).
-
Fouladiha, H. et al. A metabolic network-based approach for developing feeding strategies for CHO cells to increase monoclonal antibody production. Bioprocess Biosyst. Eng. 43, 1381–1389 (2020).
-
Browne, S. M. & Al-rubeai, M. Selection methods for high-producing mammalian cell lines. Trends Biotechnol. 25, 425–432 (2010).
-
Lee, J. S., Kildegaard, H. F., Lewis, N. E. & Lee, G. M. Mitigating clonal variation in recombinant mammalian cell lines. Trends Biotechnol 37, 931–942 (2019).
-
Tharmalingam, T. et al. Characterization of phenotypic and genotypic diversity in subclones derived from a clonal cell line. Biotechnol. Prog. 34, 613–623 (2018).
-
Dahodwala, H. & Lee, K. H. The fickle CHO: a review of the causes, implications, and potential alleviation of the CHO cell line instability problem. Curr. Opin. Biotechnol. 60, 128–137 (2019).
-
Dorai, H. et al. Early prediction of instability of chinese hamster ovary cell lines expressing recombinant antibodies and antibody-fusion proteins. Biotechnol. Bioeng. 109, 1016–1030 (2012).
-
Tihanyi, B. & Nyitray, L. Recent advances in CHO cell line development for recombinant protein production. Drug Discov. Today Technol 38, 25–34 (2020).
-
O’Flaherty, R. et al. Mammalian cell culture for production of recombinant proteins: a review of the critical steps in their biomanufacturing. Biotechnol. Adv. 43, 107552 (2020).
-
Wurm, F. & Wurm, M. Cloning of CHO. Cells, Productivity and Genetic Stability—A Discussion. Processes 5, 20 (2017).
-
Marx, N., Eisenhut, P., Weinguny, M., Klanert, G. & Borth, N. How to train your cell – Towards controlling phenotypes by harnessing the epigenome of Chinese hamster ovary production cell lines. Biotechnol. Adv. 56, 107924 (2022).
-
Feichtinger, J. et al. Comprehensive genome and epigenome characterization of CHO cells in response to evolutionary pressures and over time. Biotechnol. Bioeng. 113, 2241–2253 (2016).
-
Bailey, L. A., Hatton, D., Field, R. & Dickson, A. J. Determination of Chinese hamster ovary cell line stability and recombinant antibody expression during long-term culture. Biotechnol. Bioeng. 109, 2093–2103 (2012).
-
Qian, Y. et al. New insights into genetic instability of an industrial CHO cell line by orthogonal omics. Biochem. Eng. J. 164, 107799 (2020).
-
Sowa, S. W. et al. Metabolomic and quality data for early and late passages of an antibody-producing industrial CHO cell line. Data Br 33, 106591 (2020).
-
Torres, M. et al. Long term culture promotes changes to growth, gene expression, and metabolism in CHO cells that are independent of production stability. Biotechnol. Bioeng. 120, 2389–2402 (2023).
-
Kaur, R., Jain, R., Budholiya, N. & Rathore, A. S. Long term culturing of CHO cells: phenotypic drift and quality attributes of the expressed monoclonal antibody. Biotechnol. Lett. 45, 357–370 (2023).
-
Suthers, P. F., Foster, C. J., Sarkar, D., Wang, L. & Maranas, C. D. Recent advances in constraint and machine learning-based metabolic modeling by leveraging stoichiometric balances, thermodynamic feasibility and kinetic law formalisms. Metab. Eng. 63, 13–33 (2021).
-
Park, S.-Y. et al. Driving towards digital biomanufacturing by CHO genome-scale models. Trends Biotechnol. 42, 1192–1203 (2024).
-
Hefzi, H. et al. A consensus genome-scale reconstruction of Chinese hamster ovary cell metabolism. Cell Syst. 3, 434–443.e8 (2016).
-
Strain, B., Morrissey, J., Antonakoudis, A. & Kontoravdi, C. Genome-scale models as a vehicle for knowledge transfer from microbial to mammalian cell systems. Comput. Struct. Biotechnol. J. 21, 1543–1549 (2023).
-
Hong, J. K. et al. Data-driven and model-guided systematic framework for media development in CHO cell culture. Metab. Eng. 73, 114–123 (2022).
-
Park, S.-Y. et al. Debottlenecking and reformulating feed media for improved CHO cell growth and titer by data-driven and model-guided analyses. Biotechnol. J. 18, 1–14 (2023).
-
Kavoni, H., Savizi, I. S. P., Lewis, N. E. & Shojaosadati, S. A. Recent advances in culture medium design for enhanced production of monoclonal antibodies in CHO cells: a comparative study of machine learning and systems biology approaches. Biotechnol. Adv. 78, 108480 (2025).
-
Khaleghi, M. K., Savizi, I. S. P., Lewis, N. E. & Shojaosadati, S. A. Synergisms of machine learning and constraint-based modeling of metabolism for analysis and optimization of fermentation parameters. Biotechnol. J. 16, 2100212 (2021).
-
Sahu, A., Blätke, M. A., Szymański, J. J. & Töpfer, N. Advances in flux balance analysis by integrating machine learning and mechanism-based models. Comput. Struct. Biotechnol. J. 19, 4626–4640 (2021).
-
Hassija, V. et al. Interpreting black-box models: a review on explainable artificial intelligence. Cognit. Comput. 16, 45–74 (2024).
-
Hashizume, T. & Ying, B. W. Challenges in developing cell culture media using machine learning. Biotechnol. Adv. 70, 108293 (2024).
-
Wu, D. et al. Towards a hybrid model-driven platform based on flux balance analysis and a machine learning pipeline for biosystem design. Synth. Syst. Biotechnol. 9, 33–42 (2024).
-
Yeo, H. C., Hong, J., Lakshmanan, M. & Lee, D.-Y. Enzyme capacity-based genome scale modelling of CHO cells. Metab. Eng. 60, 138–147 (2020).
-
Kuo, M., Chen, H., Feun, L. & Savaraj, N. Targeting the proline–glutamine–asparagine–arginine metabolic axis in amino acid starvation cancer therapy. Pharmaceuticals 14, 72 (2021).
-
Owen, O. E., Kalhan, S. C. & Hanson, R. W. The key role of anaplerosis and cataplerosis for citric acid cycle function. J. Biol. Chem. 277, 30409–30412 (2002).
-
Yang, M. & Vousden, K. H. Serine and one-carbon metabolism in cancer. Nat. Rev. Cancer 16, 650–662 (2016).
-
Chung, B. K. S. & Lee, D.-Y. Flux-sum analysis: a metabolite-centric approach for understanding the metabolic network. BMC Syst. Biol. 3, 117 (2009).
-
Handlogten, M. W., Zhu, M. & Ahuja, S. Intracellular response of CHO cells to oxidative stress and its influence on metabolism and antibody production. Biochem. Eng. J. 133, 12–20 (2018).
-
Ha, T. K., Hansen, A. H., Kol, S., Kildegaard, H. F. & Lee, G. M. Baicalein reduces oxidative stress in CHO cell cultures and improves recombinant antibody productivity. Biotechnol. J. 13, 1–10 (2018).
-
Chevallier, V., Andersen, M. R. & Malphettes, L. Oxidative stress-alleviating strategies to improve recombinant protein production in CHO cells. Biotechnol. Bioeng. 117, 1172–1186 (2020).
-
Feige, M. J. & Hendershot, L. M. Disulfide bonds in ER protein folding and homeostasis. Curr. Opin. Cell Biol. 23, 167–175 (2011).
-
Mulukutla, B. C. et al. Metabolic engineering of Chinese hamster ovary cells towards reduced biosynthesis and accumulation of novel growth inhibitors in fed-batch cultures. Metab. Eng. 54, 54–68 (2019).
-
Kundu, P., Beura, S., Mondal, S., Das, A. K. & Ghosh, A. Machine learning for the advancement of genome-scale metabolic modeling. Biotechnol. Adv. 74, 108400 (2024).
-
Hecklau, C. et al. S-Sulfocysteine simplifies fed-batch processes and increases the CHO specific productivity via anti-oxidant activity. J. Biotechnol. 218, 53–63 (2016).
-
Kaur, R. & Rathore, A. S. Role of oxidative stress in modulating CHO cell culture performance: Impact on titer and quality attributes of a monoclonal antibody therapeutic. J. Chem. Technol. Biotechnol. 98, 651–660 (2023).
-
Jaishy, B. & Abel, E. D. Lipids, lysosomes, and autophagy. J. Lipid Res. 57, 1619–1635 (2016).
-
Su, L.-J. et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid. Med. Cell. Longev. 2019, 1–13 (2019).
-
Kim, M., O’Callaghan, P. M., Droms, K. A. & James, D. C. A mechanistic understanding of production instability in CHO cell lines expressing recombinant monoclonal antibodies. Biotechnol. Bioeng. 108, 2434–2446 (2011).
-
Veith, N., Ziehr, H., MacLeod, R. A. F. & Reamon-Buettner, S. M. Mechanisms underlying epigenetic and transcriptional heterogeneity in Chinese hamster ovary (CHO) cell lines. BMC Biotechnol. 16, 1–16 (2016).
-
Mulukutla, B. C., Gramer, M. & Hu, W.-S. On metabolic shift to lactate consumption in fed-batch culture of mammalian cells. Metab. Eng. 14, 138–149 (2012).
-
Hartley, F., Walker, T., Chung, V. & Morten, K. Mechanisms driving the lactate switch in Chinese hamster ovary cells. Biotechnol. Bioeng. 115, 1890–1903 (2018).
-
Song, J., Park, S.-Y. & Lee, D.-Y. Characterization and design of dipeptide media formulation for scalable therapeutic production. Appl. Microbiol. Biotechnol. 109, 7 (2025).
-
Tang, H. et al. Insight into the roles of tyrosine on rCHO cell performance in fed-batch cultures. Appl. Microbiol. Biotechnol. 103, 6483–6494 (2019).
-
Bröer, S. & Gauthier-coles, G. Amino acid homeostasis in mammalian cells with a focus on amino acid transport. J. Nutr 152, 16–28 (2021).
-
Hong, J. K. et al. In silico model-based characterization of metabolic response to harsh sparging stress in fed-batch CHO cell cultures. J. Biotechnol. 308, 10–20 (2020).
-
Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2, 56–67 (2020).
-
Bifarin, O. O. & Fernández, F. M. Automated machine learning and explainable AI (AutoML-XAI) for metabolomics: improving cancer diagnostics. J. Am. Soc. Mass Spectrom. 35, 1089–1100 (2024).
-
Ding, Q. et al. Explainable artificial intelligence in the field of drug research. Drug Des. Devel. Ther. 19, 4501–4516 (2025).
-
Rogers, A. W., Vega-Ramon, F., Lane, A., Martin, P. & Zhang, D. Interpretable-AI-based model structural transfer learning to accelerate bioprocess model construction. Biotechnol. Bioeng. 1–13, https://doi.org/10.1002/bit.70026 (2025).
-
Gangwar, N., Balraj, K. & Rathore, A. S. Explainable AI for CHO cell culture media optimization and prediction of critical quality attribute. Appl. Microbiol. Biotechnol. 108, 308 (2024).
-
Lakshmanan, M., Kim, T. Y., Chung, B. K. S., Lee, S. Y. & Lee, D. Y. Flux-sum analysis identifies metabolite targets for strain improvement. BMC Syst. Biol. 9, 1–11 (2015).
-
Heirendt, L. et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat. Protoc. 14, 639–702 (2019).
-
Lundberg, S. & Lee, S.-I. A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems 4766–4775 http://arxiv.org/abs/1705.07874 (2017).
