Exploring CHO cell stability during prolonged passaging via eXplainable AI driven flux balance analysis

exploring-cho-cell-stability-during-prolonged-passaging-via-explainable-ai-driven-flux-balance-analysis
Exploring CHO cell stability during prolonged passaging via eXplainable AI driven flux balance analysis

References

  1. Walsh, G. & Walsh, E. Biopharmaceutical benchmarks 2022. Nat. Biotechnol. 40, 1722–1760 (2022).

    Google Scholar 

  2. Pereira, S., Kildegaard, H. F. & Andersen, M. R. Impact of CHO metabolism on cell growth and protein production: an overview of toxic and inhibiting metabolites and nutrients. Biotechnol. J. 13, 1–13 (2018).

    Google Scholar 

  3. Shin, S. W., Kyeong, M. & Lee, J. S. Next-generation cell engineering platform for improving recombinant protein production in mammalian cells. In Cell Culture Engineering and Technology. Cell Engineering, vol 10 (ed. Pörtner, R.) 189–224 https://doi.org/10.1007/978-3-030-79871-0_7 (Springer, 2021).

  4. Hong, J. K., Lakshmanan, M., Goudar, C. & Lee, D.-Y. Towards next generation CHO cell line development and engineering by systems approaches. Curr. Opin. Chem. Eng. 22, 1–10 (2018).

    Google Scholar 

  5. Fouladiha, H. et al. A metabolic network-based approach for developing feeding strategies for CHO cells to increase monoclonal antibody production. Bioprocess Biosyst. Eng. 43, 1381–1389 (2020).

    Google Scholar 

  6. Browne, S. M. & Al-rubeai, M. Selection methods for high-producing mammalian cell lines. Trends Biotechnol. 25, 425–432 (2010).

    Google Scholar 

  7. Lee, J. S., Kildegaard, H. F., Lewis, N. E. & Lee, G. M. Mitigating clonal variation in recombinant mammalian cell lines. Trends Biotechnol 37, 931–942 (2019).

    Google Scholar 

  8. Tharmalingam, T. et al. Characterization of phenotypic and genotypic diversity in subclones derived from a clonal cell line. Biotechnol. Prog. 34, 613–623 (2018).

    Google Scholar 

  9. Dahodwala, H. & Lee, K. H. The fickle CHO: a review of the causes, implications, and potential alleviation of the CHO cell line instability problem. Curr. Opin. Biotechnol. 60, 128–137 (2019).

    Google Scholar 

  10. Dorai, H. et al. Early prediction of instability of chinese hamster ovary cell lines expressing recombinant antibodies and antibody-fusion proteins. Biotechnol. Bioeng. 109, 1016–1030 (2012).

    Google Scholar 

  11. Tihanyi, B. & Nyitray, L. Recent advances in CHO cell line development for recombinant protein production. Drug Discov. Today Technol 38, 25–34 (2020).

    Google Scholar 

  12. O’Flaherty, R. et al. Mammalian cell culture for production of recombinant proteins: a review of the critical steps in their biomanufacturing. Biotechnol. Adv. 43, 107552 (2020).

    Google Scholar 

  13. Wurm, F. & Wurm, M. Cloning of CHO. Cells, Productivity and Genetic Stability—A Discussion. Processes 5, 20 (2017).

    Google Scholar 

  14. Marx, N., Eisenhut, P., Weinguny, M., Klanert, G. & Borth, N. How to train your cell – Towards controlling phenotypes by harnessing the epigenome of Chinese hamster ovary production cell lines. Biotechnol. Adv. 56, 107924 (2022).

    Google Scholar 

  15. Feichtinger, J. et al. Comprehensive genome and epigenome characterization of CHO cells in response to evolutionary pressures and over time. Biotechnol. Bioeng. 113, 2241–2253 (2016).

    Google Scholar 

  16. Bailey, L. A., Hatton, D., Field, R. & Dickson, A. J. Determination of Chinese hamster ovary cell line stability and recombinant antibody expression during long-term culture. Biotechnol. Bioeng. 109, 2093–2103 (2012).

    Google Scholar 

  17. Qian, Y. et al. New insights into genetic instability of an industrial CHO cell line by orthogonal omics. Biochem. Eng. J. 164, 107799 (2020).

    Google Scholar 

  18. Sowa, S. W. et al. Metabolomic and quality data for early and late passages of an antibody-producing industrial CHO cell line. Data Br 33, 106591 (2020).

    Google Scholar 

  19. Torres, M. et al. Long term culture promotes changes to growth, gene expression, and metabolism in CHO cells that are independent of production stability. Biotechnol. Bioeng. 120, 2389–2402 (2023).

    Google Scholar 

  20. Kaur, R., Jain, R., Budholiya, N. & Rathore, A. S. Long term culturing of CHO cells: phenotypic drift and quality attributes of the expressed monoclonal antibody. Biotechnol. Lett. 45, 357–370 (2023).

    Google Scholar 

  21. Suthers, P. F., Foster, C. J., Sarkar, D., Wang, L. & Maranas, C. D. Recent advances in constraint and machine learning-based metabolic modeling by leveraging stoichiometric balances, thermodynamic feasibility and kinetic law formalisms. Metab. Eng. 63, 13–33 (2021).

    Google Scholar 

  22. Park, S.-Y. et al. Driving towards digital biomanufacturing by CHO genome-scale models. Trends Biotechnol. 42, 1192–1203 (2024).

    Google Scholar 

  23. Hefzi, H. et al. A consensus genome-scale reconstruction of Chinese hamster ovary cell metabolism. Cell Syst. 3, 434–443.e8 (2016).

    Google Scholar 

  24. Strain, B., Morrissey, J., Antonakoudis, A. & Kontoravdi, C. Genome-scale models as a vehicle for knowledge transfer from microbial to mammalian cell systems. Comput. Struct. Biotechnol. J. 21, 1543–1549 (2023).

    Google Scholar 

  25. Hong, J. K. et al. Data-driven and model-guided systematic framework for media development in CHO cell culture. Metab. Eng. 73, 114–123 (2022).

    Google Scholar 

  26. Park, S.-Y. et al. Debottlenecking and reformulating feed media for improved CHO cell growth and titer by data-driven and model-guided analyses. Biotechnol. J. 18, 1–14 (2023).

    Google Scholar 

  27. Kavoni, H., Savizi, I. S. P., Lewis, N. E. & Shojaosadati, S. A. Recent advances in culture medium design for enhanced production of monoclonal antibodies in CHO cells: a comparative study of machine learning and systems biology approaches. Biotechnol. Adv. 78, 108480 (2025).

    Google Scholar 

  28. Khaleghi, M. K., Savizi, I. S. P., Lewis, N. E. & Shojaosadati, S. A. Synergisms of machine learning and constraint-based modeling of metabolism for analysis and optimization of fermentation parameters. Biotechnol. J. 16, 2100212 (2021).

    Google Scholar 

  29. Sahu, A., Blätke, M. A., Szymański, J. J. & Töpfer, N. Advances in flux balance analysis by integrating machine learning and mechanism-based models. Comput. Struct. Biotechnol. J. 19, 4626–4640 (2021).

    Google Scholar 

  30. Hassija, V. et al. Interpreting black-box models: a review on explainable artificial intelligence. Cognit. Comput. 16, 45–74 (2024).

    Google Scholar 

  31. Hashizume, T. & Ying, B. W. Challenges in developing cell culture media using machine learning. Biotechnol. Adv. 70, 108293 (2024).

    Google Scholar 

  32. Wu, D. et al. Towards a hybrid model-driven platform based on flux balance analysis and a machine learning pipeline for biosystem design. Synth. Syst. Biotechnol. 9, 33–42 (2024).

    Google Scholar 

  33. Yeo, H. C., Hong, J., Lakshmanan, M. & Lee, D.-Y. Enzyme capacity-based genome scale modelling of CHO cells. Metab. Eng. 60, 138–147 (2020).

    Google Scholar 

  34. Kuo, M., Chen, H., Feun, L. & Savaraj, N. Targeting the proline–glutamine–asparagine–arginine metabolic axis in amino acid starvation cancer therapy. Pharmaceuticals 14, 72 (2021).

    Google Scholar 

  35. Owen, O. E., Kalhan, S. C. & Hanson, R. W. The key role of anaplerosis and cataplerosis for citric acid cycle function. J. Biol. Chem. 277, 30409–30412 (2002).

    Google Scholar 

  36. Yang, M. & Vousden, K. H. Serine and one-carbon metabolism in cancer. Nat. Rev. Cancer 16, 650–662 (2016).

    Google Scholar 

  37. Chung, B. K. S. & Lee, D.-Y. Flux-sum analysis: a metabolite-centric approach for understanding the metabolic network. BMC Syst. Biol. 3, 117 (2009).

    Google Scholar 

  38. Handlogten, M. W., Zhu, M. & Ahuja, S. Intracellular response of CHO cells to oxidative stress and its influence on metabolism and antibody production. Biochem. Eng. J. 133, 12–20 (2018).

    Google Scholar 

  39. Ha, T. K., Hansen, A. H., Kol, S., Kildegaard, H. F. & Lee, G. M. Baicalein reduces oxidative stress in CHO cell cultures and improves recombinant antibody productivity. Biotechnol. J. 13, 1–10 (2018).

    Google Scholar 

  40. Chevallier, V., Andersen, M. R. & Malphettes, L. Oxidative stress-alleviating strategies to improve recombinant protein production in CHO cells. Biotechnol. Bioeng. 117, 1172–1186 (2020).

    Google Scholar 

  41. Feige, M. J. & Hendershot, L. M. Disulfide bonds in ER protein folding and homeostasis. Curr. Opin. Cell Biol. 23, 167–175 (2011).

    Google Scholar 

  42. Mulukutla, B. C. et al. Metabolic engineering of Chinese hamster ovary cells towards reduced biosynthesis and accumulation of novel growth inhibitors in fed-batch cultures. Metab. Eng. 54, 54–68 (2019).

    Google Scholar 

  43. Kundu, P., Beura, S., Mondal, S., Das, A. K. & Ghosh, A. Machine learning for the advancement of genome-scale metabolic modeling. Biotechnol. Adv. 74, 108400 (2024).

    Google Scholar 

  44. Hecklau, C. et al. S-Sulfocysteine simplifies fed-batch processes and increases the CHO specific productivity via anti-oxidant activity. J. Biotechnol. 218, 53–63 (2016).

    Google Scholar 

  45. Kaur, R. & Rathore, A. S. Role of oxidative stress in modulating CHO cell culture performance: Impact on titer and quality attributes of a monoclonal antibody therapeutic. J. Chem. Technol. Biotechnol. 98, 651–660 (2023).

    Google Scholar 

  46. Jaishy, B. & Abel, E. D. Lipids, lysosomes, and autophagy. J. Lipid Res. 57, 1619–1635 (2016).

    Google Scholar 

  47. Su, L.-J. et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid. Med. Cell. Longev. 2019, 1–13 (2019).

    Google Scholar 

  48. Kim, M., O’Callaghan, P. M., Droms, K. A. & James, D. C. A mechanistic understanding of production instability in CHO cell lines expressing recombinant monoclonal antibodies. Biotechnol. Bioeng. 108, 2434–2446 (2011).

    Google Scholar 

  49. Veith, N., Ziehr, H., MacLeod, R. A. F. & Reamon-Buettner, S. M. Mechanisms underlying epigenetic and transcriptional heterogeneity in Chinese hamster ovary (CHO) cell lines. BMC Biotechnol. 16, 1–16 (2016).

    Google Scholar 

  50. Mulukutla, B. C., Gramer, M. & Hu, W.-S. On metabolic shift to lactate consumption in fed-batch culture of mammalian cells. Metab. Eng. 14, 138–149 (2012).

    Google Scholar 

  51. Hartley, F., Walker, T., Chung, V. & Morten, K. Mechanisms driving the lactate switch in Chinese hamster ovary cells. Biotechnol. Bioeng. 115, 1890–1903 (2018).

    Google Scholar 

  52. Song, J., Park, S.-Y. & Lee, D.-Y. Characterization and design of dipeptide media formulation for scalable therapeutic production. Appl. Microbiol. Biotechnol. 109, 7 (2025).

    Google Scholar 

  53. Tang, H. et al. Insight into the roles of tyrosine on rCHO cell performance in fed-batch cultures. Appl. Microbiol. Biotechnol. 103, 6483–6494 (2019).

    Google Scholar 

  54. Bröer, S. & Gauthier-coles, G. Amino acid homeostasis in mammalian cells with a focus on amino acid transport. J. Nutr 152, 16–28 (2021).

    Google Scholar 

  55. Hong, J. K. et al. In silico model-based characterization of metabolic response to harsh sparging stress in fed-batch CHO cell cultures. J. Biotechnol. 308, 10–20 (2020).

    Google Scholar 

  56. Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2, 56–67 (2020).

    Google Scholar 

  57. Bifarin, O. O. & Fernández, F. M. Automated machine learning and explainable AI (AutoML-XAI) for metabolomics: improving cancer diagnostics. J. Am. Soc. Mass Spectrom. 35, 1089–1100 (2024).

    Google Scholar 

  58. Ding, Q. et al. Explainable artificial intelligence in the field of drug research. Drug Des. Devel. Ther. 19, 4501–4516 (2025).

    Google Scholar 

  59. Rogers, A. W., Vega-Ramon, F., Lane, A., Martin, P. & Zhang, D. Interpretable-AI-based model structural transfer learning to accelerate bioprocess model construction. Biotechnol. Bioeng. 1–13, https://doi.org/10.1002/bit.70026 (2025).

  60. Gangwar, N., Balraj, K. & Rathore, A. S. Explainable AI for CHO cell culture media optimization and prediction of critical quality attribute. Appl. Microbiol. Biotechnol. 108, 308 (2024).

    Google Scholar 

  61. Lakshmanan, M., Kim, T. Y., Chung, B. K. S., Lee, S. Y. & Lee, D. Y. Flux-sum analysis identifies metabolite targets for strain improvement. BMC Syst. Biol. 9, 1–11 (2015).

    Google Scholar 

  62. Heirendt, L. et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat. Protoc. 14, 639–702 (2019).

    Google Scholar 

  63. Lundberg, S. & Lee, S.-I. A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems 4766–4775 http://arxiv.org/abs/1705.07874 (2017).

Download references