References
-
Wächtershäuser, G. Evolution of the first metabolic cycles. Proc. Natl. Acad. Sci. 87, 200–204 (1990).
-
Orgel, L. E. Prebiotic chemistry and the origin of the RNA world. Crit. Rev. Biochem. Mol. Biol. 39, 99–123 (2004).
-
Szostak, J. W., Bartel, D. P. & Luisi, P. L. Synthesizing life. Nature 409, 387–390 (2001).
-
Martin, W., Baross, J., Kelley, D. & Russell, M. J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6, 805–814 (2008).
-
Damer, B. & Deamer, D. The hot spring hypothesis for an origin of life. Astrobiology 20, 429–452 (2020).
-
Gilbert, W. Origin of life: the RNA world. Nature 319, 618–618 (1986).
-
Joyce, G. F. The antiquity of RNA-based evolution. Nature 418, 214–221 (2002).
-
Attwater, J., Wochner, A. & Holliger, P. In-ice evolution of RNA polymerase ribozyme activity. Nat. Chem. 5, 1011–1018 (2013).
-
Horning, D. P. & Joyce, G. F. Amplification of RNA by an RNA polymerase ribozyme. Proceedings of the National Academy of Sciences 113, 9786–9791 (2016).
-
Attwater, J. et al. Trinucleotide substrates under pH–freeze–thaw cycles enable open-ended exponential RNA replication by a polymerase ribozyme. Nat. Chem. 17, 1129–1137 (2025).
-
Barks, H. L. et al. Guanine, Adenine, and Hypoxanthine Production in UV-Irradiated Formamide Solutions: Relaxation of the Requirements for Prebiotic Purine Nucleobase Formation. ChemBioChem 11, 1240–1243 (2010).
-
Baidya, A. S., Pasek, M. A. & Stüeken, E. E. Moderate and high-temperature metamorphic conditions produced diverse phosphorous species for the origin of life. Commun. Earth Environ. 5, 1–12 (2024).
-
Ono, C. et al. Abiotic ribose synthesis under aqueous environments with various chemical conditions. Astrobiology 24, 489–497 (2024).
-
Xu, H. X., Zhao, Z. R. & Wang, X. A selective non-enzymatic synthesis of ribose simply from formaldehyde, metal salts and clays. Chem. Commun. https://doi.org/10.1039/D4CC03981E (2024).
-
Martins, Z. et al. Extraterrestrial nucleobases in the Murchison meteorite. Earth Planet. Sci. Lett. 270, 130–136 (2008).
-
Callahan, M. et al. Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc. Natl. Acad. Sci. 108, 13995–13998 (2011).
-
Oba, Y. et al. Uracil in the carbonaceous asteroid (162173) Ryugu. Nat. Commun. 14, 1292 (2023).
-
Glavin, D. P. et al. Abundant ammonia and nitrogen-rich soluble organic matter in samples from asteroid (101955) Bennu. Nat. Astron. 9, 199–210 (2025).
-
Powner, M. W., Gerland, B. & Sutherland, J. D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459, 239–242 (2009).
-
Kim, H. J. & A. Benner, S. Prebiotic stereoselective synthesis of purine and noncanonical pyrimidine nucleotide from nucleobases and phosphorylated carbohydrates. Proc. Natl. Acad. Sci. 114, 11315–11320 (2017).
-
Nam, I., Nam, H. G. & Zare, R. N. Abiotic synthesis of purine and pyrimidine ribonucleosides in aqueous microdroplets. Proceedings of the National Academy of Sciences 115, 36–40 (2018).
-
Suárez-Marina, I. et al. Integrated synthesis of nucleotide and nucleosides influenced by amino acids. Commun. Chem. 2, 1–8 (2019).
-
Becker, S. et al. Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides. Science 366, 76–82 (2019).
-
Becker, S. et al. Wet-dry cycles enable the parallel origin of canonical and non-canonical nucleosides by continuous synthesis. Nat. Commun. 9, 163 (2018).
-
Xu, J. et al. Selective prebiotic formation of RNA pyrimidine and DNA purine nucleosides. Nature 582, 60–66 (2020).
-
Diukarev, N. et al. The origin of the feedstock molecules for life on the Hadean Earth. Angewandte Chemie Int. Edition 64, e202512374 (2025).
-
Ross, D. S. & Deamer, D. Dry/Wet cycling and the thermodynamics and kinetics of prebiotic polymer synthesis. Life 6, 28 (2016).
-
Korenaga, J. Was There Land on the Early Earth? Life 11, 1142 (2021).
-
Gamaleldien, H. et al. Onset of the earth’s hydrological cycle four billion years ago or earlier. Nat. Geosci. 17, 560–565 (2024).
-
Dass, A. V. et al. RNA oligomerisation without added catalyst from 2′,3′-Cyclic nucleotides by drying at Air-Water interfaces. ChemSystemsChem 5, e202200026 (2023).
-
Caimi, F. et al. High-Yield prebiotic polymerization of 2′,3′-Cyclic nucleotides under Wet–Dry cycling. ACS Cent. Sci. https://doi.org/10.1021/acscentsci.5c00488 (2025).
-
Da Silva, L., Maurel, M. C. & Deamer, D. Salt-Promoted synthesis of RNA-like molecules in simulated hydrothermal conditions. J. Mol. Evol. 80, 86–97 (2015).
-
Hassenkam, T. & Deamer, D. Visualizing RNA polymers produced by hot wet-dry cycling. Sci. Rep. 12, 10098 (2022).
-
Da Silva, L. et al. Visualizing ribonuclease digestion of RNA-like polymers produced by hot wet-dry cycles. Biochem. Biophys. Res. Commun. 712–713, 149938 (2024).
-
Sajeev, Y. Prebiotic chemical origin of biomolecular complementarity. Commun. Chem. 6, 1–9 (2023).
-
Matreux, T., Aikkila, P., Scheu, B., Braun, D. & Mast, C. B. Heat flows enrich prebiotic Building blocks and enhance their reactivity. Nature 628, 110–116 (2024).
-
Deamer, D. Origins of life research: the conundrum between laboratory and field simulations of messy environments. Life 12, 1429 (2022).
-
Kunstelj, K., Federiconi, F. & Spindler, L. Drevenšek-Olenik, I. Self-organization of Guanosine 5′-monophosphate on mica. Colloids Surf., B. 59, 120–127 (2007).
-
Wu, G. & Kwan, I. C. M. Helical structure of disodium 5′-Guanosine monophosphate Self-Assembly in neutral solution. J. Am. Chem. Soc. 131, 3180–3182 (2009).
-
Gellert, M., Lipsett, M. N. & Davies, D. R. Helix formation by guanylic acid. Proceedings of the National Academy of Sciences 48, 2013–2018 (1962).
-
Fresco, J. R. & Massoulie Jean. Polynucleotides. V. Helix-Coil transition of polyriboguanylic acid. J. Am. Chem. Soc. 85, 1352–1353 (1963).
-
Davis, J. T. G-Quartets 40 years later: from 5′-GMP to molecular biology and supramolecular chemistry. Angew. Chem. Int. Ed. 43, 668–698 (2004).
-
Bochman, M. L., Paeschke, K. & Zakian, V. A. DNA secondary structures: stability and function of G-quadruplex structures. Nat. Rev. Genet. 13, 770–780 (2012).
-
Cassidy, L. M., Burcar, B. T., Stevens, W., Moriarty, E. M. & McGown, L. B. Guanine-Centric Self-Assembly of nucleotides in water: an important consideration in prebiotic chemistry. Astrobiology 14, 876–886 (2014).
-
Kankia, B. Which came first: the chicken, the egg, or guanine? RNA 1317-1324 https://doi.org/10.1261/rna.079613.123 (2023).
-
Marsh, T. C., Vesenka, J. & Henderson, E. A new DNA nanostructure, the G-wire, imaged by scanning probe microscopy. Nucleic Acids Res. 23, 696–700 (1995).
-
Bose, K., Lech, C. J., Heddi, B. & Phan, A. T. High-resolution AFM structure of DNA G-wires in aqueous solution. Nat. Commun. 9, 1959 (2018).
-
Hud, N. V., Smith, F. W., Anet, F. A. L. & Feigon, J. The Selectivity for K+ versus Na + in DNA Quadruplexes Is Dominated by Relative Free Energies of Hydration: A Thermodynamic Analysis by 1H NMR. Biochemistry 35, 15383–15390 (1996).
-
Pastré, D. et al. Adsorption of DNA to mica mediated by divalent counterions: A theoretical and experimental study. Biophys. J. 85, 2507–2518 (2003).
-
Haynes, P. J., Main, K. H. S. & Pyne, A. L. B. Atomic Force Microscopy of DNA and DNA-Protein Interactions. protocols.io https://doi.org/10.17504/protocols.io.bncemate (2020). https://doi.org/10.17504/protocols.io.bncemate
-
Klejevskaja, B. et al. Studies of G-quadruplexes formed within self-assembled DNA mini-circles. Chem. Commun. 52, 12454–12457 (2016).
-
Schön, P. Atomic force microscopy of RNA: state of the Art and recent advancements. Seminars Cell Developmental Biology. 73, 209–219 (2018).
-
Gilmore, J. L., Yoshida, A., Hejna, J. A. & Takeyasu, K. Visualization of conformational variability in the domains of long single-stranded RNA molecules. Nucleic Acids Res. 45, 8493–8507 (2017).
-
Chi, Q., Wang, G. & Jiang, J. The persistence length and length per base of single-stranded DNA obtained from fluorescence correlation spectroscopy measurements using mean field theory. Phys. A: Stat. Mech. Its Appl. 392, 1072–1079 (2013).
-
Gilmore, J. L. et al. Nanoimaging of ssrna: genome architecture of the hepatitis C virus revealed by atomic force microscopy. Journal Nanomedicine Nanotechnology. S5, 1–7 (2014).
-
Beton, J. G. et al. TopoStats – A program for automated tracing of biomolecules from AFM images. Methods 193, 68–79 (2021).
-
Holmes, E. P. et al. Quantifying complexity in DNA structures with high resolution atomic force microscopy. Nat. Commun. 16, 5482 (2025).
-
Eiby, S. H. J., Catley, T. E., Gamill, M. C., Pyne, A. L. B. & Hassenkam, T. Self-Assembled G-Quadruplexes as scaffolds for prebiotic RNA Synthesis – Structural analyses. Code Ocean. https://doi.org/10.24433/CO.4460790.v1 (2025).
