G-quadruplexes self-assembled from nucleotide monomers as stable prepolymer scaffolds in aqueous environments

g-quadruplexes-self-assembled-from-nucleotide-monomers-as-stable-prepolymer-scaffolds-in-aqueous-environments
G-quadruplexes self-assembled from nucleotide monomers as stable prepolymer scaffolds in aqueous environments

References

  1. Wächtershäuser, G. Evolution of the first metabolic cycles. Proc. Natl. Acad. Sci. 87, 200–204 (1990).

    Google Scholar 

  2. Orgel, L. E. Prebiotic chemistry and the origin of the RNA world. Crit. Rev. Biochem. Mol. Biol. 39, 99–123 (2004).

    Google Scholar 

  3. Szostak, J. W., Bartel, D. P. & Luisi, P. L. Synthesizing life. Nature 409, 387–390 (2001).

    Google Scholar 

  4. Martin, W., Baross, J., Kelley, D. & Russell, M. J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6, 805–814 (2008).

    Google Scholar 

  5. Damer, B. & Deamer, D. The hot spring hypothesis for an origin of life. Astrobiology 20, 429–452 (2020).

    Google Scholar 

  6. Gilbert, W. Origin of life: the RNA world. Nature 319, 618–618 (1986).

    Google Scholar 

  7. Joyce, G. F. The antiquity of RNA-based evolution. Nature 418, 214–221 (2002).

    Google Scholar 

  8. Attwater, J., Wochner, A. & Holliger, P. In-ice evolution of RNA polymerase ribozyme activity. Nat. Chem. 5, 1011–1018 (2013).

    Google Scholar 

  9. Horning, D. P. & Joyce, G. F. Amplification of RNA by an RNA polymerase ribozyme. Proceedings of the National Academy of Sciences 113, 9786–9791 (2016).

  10. Attwater, J. et al. Trinucleotide substrates under pH–freeze–thaw cycles enable open-ended exponential RNA replication by a polymerase ribozyme. Nat. Chem. 17, 1129–1137 (2025).

    Google Scholar 

  11. Barks, H. L. et al. Guanine, Adenine, and Hypoxanthine Production in UV-Irradiated Formamide Solutions: Relaxation of the Requirements for Prebiotic Purine Nucleobase Formation. ChemBioChem 11, 1240–1243 (2010).

  12. Baidya, A. S., Pasek, M. A. & Stüeken, E. E. Moderate and high-temperature metamorphic conditions produced diverse phosphorous species for the origin of life. Commun. Earth Environ. 5, 1–12 (2024).

    Google Scholar 

  13. Ono, C. et al. Abiotic ribose synthesis under aqueous environments with various chemical conditions. Astrobiology 24, 489–497 (2024).

    Google Scholar 

  14. Xu, H. X., Zhao, Z. R. & Wang, X. A selective non-enzymatic synthesis of ribose simply from formaldehyde, metal salts and clays. Chem. Commun. https://doi.org/10.1039/D4CC03981E (2024).

    Google Scholar 

  15. Martins, Z. et al. Extraterrestrial nucleobases in the Murchison meteorite. Earth Planet. Sci. Lett. 270, 130–136 (2008).

    Google Scholar 

  16. Callahan, M. et al. Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc. Natl. Acad. Sci. 108, 13995–13998 (2011).

    Google Scholar 

  17. Oba, Y. et al. Uracil in the carbonaceous asteroid (162173) Ryugu. Nat. Commun. 14, 1292 (2023).

    Google Scholar 

  18. Glavin, D. P. et al. Abundant ammonia and nitrogen-rich soluble organic matter in samples from asteroid (101955) Bennu. Nat. Astron. 9, 199–210 (2025).

    Google Scholar 

  19. Powner, M. W., Gerland, B. & Sutherland, J. D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459, 239–242 (2009).

    Google Scholar 

  20. Kim, H. J. & A. Benner, S. Prebiotic stereoselective synthesis of purine and noncanonical pyrimidine nucleotide from nucleobases and phosphorylated carbohydrates. Proc. Natl. Acad. Sci. 114, 11315–11320 (2017).

    Google Scholar 

  21. Nam, I., Nam, H. G. & Zare, R. N. Abiotic synthesis of purine and pyrimidine ribonucleosides in aqueous microdroplets. Proceedings of the National Academy of Sciences 115, 36–40 (2018).

  22. Suárez-Marina, I. et al. Integrated synthesis of nucleotide and nucleosides influenced by amino acids. Commun. Chem. 2, 1–8 (2019).

    Google Scholar 

  23. Becker, S. et al. Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides. Science 366, 76–82 (2019).

    Google Scholar 

  24. Becker, S. et al. Wet-dry cycles enable the parallel origin of canonical and non-canonical nucleosides by continuous synthesis. Nat. Commun. 9, 163 (2018).

    Google Scholar 

  25. Xu, J. et al. Selective prebiotic formation of RNA pyrimidine and DNA purine nucleosides. Nature 582, 60–66 (2020).

    Google Scholar 

  26. Diukarev, N. et al. The origin of the feedstock molecules for life on the Hadean Earth. Angewandte Chemie Int. Edition 64, e202512374 (2025).

  27. Ross, D. S. & Deamer, D. Dry/Wet cycling and the thermodynamics and kinetics of prebiotic polymer synthesis. Life 6, 28 (2016).

    Google Scholar 

  28. Korenaga, J. Was There Land on the Early Earth? Life 11, 1142 (2021).

  29. Gamaleldien, H. et al. Onset of the earth’s hydrological cycle four billion years ago or earlier. Nat. Geosci. 17, 560–565 (2024).

    Google Scholar 

  30. Dass, A. V. et al. RNA oligomerisation without added catalyst from 2′,3′-Cyclic nucleotides by drying at Air-Water interfaces. ChemSystemsChem 5, e202200026 (2023).

    Google Scholar 

  31. Caimi, F. et al. High-Yield prebiotic polymerization of 2′,3′-Cyclic nucleotides under Wet–Dry cycling. ACS Cent. Sci. https://doi.org/10.1021/acscentsci.5c00488 (2025).

    Google Scholar 

  32. Da Silva, L., Maurel, M. C. & Deamer, D. Salt-Promoted synthesis of RNA-like molecules in simulated hydrothermal conditions. J. Mol. Evol. 80, 86–97 (2015).

    Google Scholar 

  33. Hassenkam, T. & Deamer, D. Visualizing RNA polymers produced by hot wet-dry cycling. Sci. Rep. 12, 10098 (2022).

    Google Scholar 

  34. Da Silva, L. et al. Visualizing ribonuclease digestion of RNA-like polymers produced by hot wet-dry cycles. Biochem. Biophys. Res. Commun. 712–713, 149938 (2024).

    Google Scholar 

  35. Sajeev, Y. Prebiotic chemical origin of biomolecular complementarity. Commun. Chem. 6, 1–9 (2023).

    Google Scholar 

  36. Matreux, T., Aikkila, P., Scheu, B., Braun, D. & Mast, C. B. Heat flows enrich prebiotic Building blocks and enhance their reactivity. Nature 628, 110–116 (2024).

    Google Scholar 

  37. Deamer, D. Origins of life research: the conundrum between laboratory and field simulations of messy environments. Life 12, 1429 (2022).

    Google Scholar 

  38. Kunstelj, K., Federiconi, F. & Spindler, L. Drevenšek-Olenik, I. Self-organization of Guanosine 5′-monophosphate on mica. Colloids Surf., B. 59, 120–127 (2007).

    Google Scholar 

  39. Wu, G. & Kwan, I. C. M. Helical structure of disodium 5′-Guanosine monophosphate Self-Assembly in neutral solution. J. Am. Chem. Soc. 131, 3180–3182 (2009).

    Google Scholar 

  40. Gellert, M., Lipsett, M. N. & Davies, D. R. Helix formation by guanylic acid. Proceedings of the National Academy of Sciences 48, 2013–2018 (1962).

  41. Fresco, J. R. & Massoulie Jean. Polynucleotides. V. Helix-Coil transition of polyriboguanylic acid. J. Am. Chem. Soc. 85, 1352–1353 (1963).

    Google Scholar 

  42. Davis, J. T. G-Quartets 40 years later: from 5′-GMP to molecular biology and supramolecular chemistry. Angew. Chem. Int. Ed. 43, 668–698 (2004).

    Google Scholar 

  43. Bochman, M. L., Paeschke, K. & Zakian, V. A. DNA secondary structures: stability and function of G-quadruplex structures. Nat. Rev. Genet. 13, 770–780 (2012).

    Google Scholar 

  44. Cassidy, L. M., Burcar, B. T., Stevens, W., Moriarty, E. M. & McGown, L. B. Guanine-Centric Self-Assembly of nucleotides in water: an important consideration in prebiotic chemistry. Astrobiology 14, 876–886 (2014).

    Google Scholar 

  45. Kankia, B. Which came first: the chicken, the egg, or guanine? RNA 1317-1324 https://doi.org/10.1261/rna.079613.123 (2023).

  46. Marsh, T. C., Vesenka, J. & Henderson, E. A new DNA nanostructure, the G-wire, imaged by scanning probe microscopy. Nucleic Acids Res. 23, 696–700 (1995).

    Google Scholar 

  47. Bose, K., Lech, C. J., Heddi, B. & Phan, A. T. High-resolution AFM structure of DNA G-wires in aqueous solution. Nat. Commun. 9, 1959 (2018).

    Google Scholar 

  48. Hud, N. V., Smith, F. W., Anet, F. A. L. & Feigon, J. The Selectivity for K+ versus Na + in DNA Quadruplexes Is Dominated by Relative Free Energies of Hydration: A Thermodynamic Analysis by 1H NMR. Biochemistry 35, 15383–15390 (1996).

  49. Pastré, D. et al. Adsorption of DNA to mica mediated by divalent counterions: A theoretical and experimental study. Biophys. J. 85, 2507–2518 (2003).

    Google Scholar 

  50. Haynes, P. J., Main, K. H. S. & Pyne, A. L. B. Atomic Force Microscopy of DNA and DNA-Protein Interactions. protocols.io https://doi.org/10.17504/protocols.io.bncemate (2020). https://doi.org/10.17504/protocols.io.bncemate

  51. Klejevskaja, B. et al. Studies of G-quadruplexes formed within self-assembled DNA mini-circles. Chem. Commun. 52, 12454–12457 (2016).

    Google Scholar 

  52. Schön, P. Atomic force microscopy of RNA: state of the Art and recent advancements. Seminars Cell Developmental Biology. 73, 209–219 (2018).

    Google Scholar 

  53. Gilmore, J. L., Yoshida, A., Hejna, J. A. & Takeyasu, K. Visualization of conformational variability in the domains of long single-stranded RNA molecules. Nucleic Acids Res. 45, 8493–8507 (2017).

    Google Scholar 

  54. Chi, Q., Wang, G. & Jiang, J. The persistence length and length per base of single-stranded DNA obtained from fluorescence correlation spectroscopy measurements using mean field theory. Phys. A: Stat. Mech. Its Appl. 392, 1072–1079 (2013).

    Google Scholar 

  55. Gilmore, J. L. et al. Nanoimaging of ssrna: genome architecture of the hepatitis C virus revealed by atomic force microscopy. Journal Nanomedicine Nanotechnology. S5, 1–7 (2014).

    Google Scholar 

  56. Beton, J. G. et al. TopoStats – A program for automated tracing of biomolecules from AFM images. Methods 193, 68–79 (2021).

    Google Scholar 

  57. Holmes, E. P. et al. Quantifying complexity in DNA structures with high resolution atomic force microscopy. Nat. Commun. 16, 5482 (2025).

    Google Scholar 

  58. Eiby, S. H. J., Catley, T. E., Gamill, M. C., Pyne, A. L. B. & Hassenkam, T. Self-Assembled G-Quadruplexes as scaffolds for prebiotic RNA Synthesis – Structural analyses. Code Ocean. https://doi.org/10.24433/CO.4460790.v1 (2025).

    Google Scholar 

Download references