Novel copper-ion coordinated andrographolide-loaded hydrogel activates Rac1/JNK1 axis for enhancing diabetic wound healing

novel-copper-ion-coordinated-andrographolide-loaded-hydrogel-activates-rac1/jnk1-axis-for-enhancing-diabetic-wound-healing
Novel copper-ion coordinated andrographolide-loaded hydrogel activates Rac1/JNK1 axis for enhancing diabetic wound healing

References

  1. Yin, G. N. et al. Latrophilin-2 is a novel receptor of LRG1 that rescues vascular and neurological abnormalities and restores diabetic erectile function. Exp. Mol. Med. 54, 626–638 (2022).

    Google Scholar 

  2. Fabio, F. et al. Prospective study on microangiopathy in type 2 diabetic foot ulcer. Diabetologia 59, 1542–1548 (2016).

    Google Scholar 

  3. Yang, L., Rong, G. C. & Wu, Q. N. Diabetic foot ulcer: challenges and future. World J. Diab. 13, 1014–1034 (2022).

    Google Scholar 

  4. He, W. et al. The cGAS-STING pathway: a therapeutic target in diabetes and its complications. Burns Trauma 12, tkad050 (2024).

    Google Scholar 

  5. Wu, X. et al. Elucidating the dual roles of apoptosis and necroptosis in diabetic wound healing: implications for therapeutic intervention. Burns Trauma 13, tkae061 (2025).

    Google Scholar 

  6. Deng, J.-Y. et al. Targeting DNA methylation and demethylation in diabetic foot ulcers. J. Adv. Res. 54, 119–131 (2023).

    Google Scholar 

  7. Cui, T. et al. Micro-gel ensembles for accelerated healing of chronic wound via pH regulation. Adv. Sci. 9, e2201254 (2022).

    Google Scholar 

  8. Ma, W. J. et al. Polydopamine decorated microneedles with Fe-MSC-derived nanovesicles encapsulation for wound healing. Adv. Sci. 9, e2103317 (2022).

    Google Scholar 

  9. Xu, Z. et al. Nanofiber-mediated sequential photothermal antibacteria and macrophage polarization for healing MRSA-infected diabetic wounds. J. Nanobiotechnol. 19, 404 (2021).

    Google Scholar 

  10. Raghavan, J. V. et al. Immunomodulatory bandage for accelerated healing of diabetic wounds. ACS Bio. Med. Chem. Au 2, 409–418 (2022).

    Google Scholar 

  11. Wu, X. Q. et al. Macrophage polarization in diabetic wound healing. Burns Trauma 10, tkac051 (2022).

    Google Scholar 

  12. Wang, C. et al. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration. Theranostics 9, 65–76 (2019).

    Google Scholar 

  13. Zou, F. et al. A novel bioactive polyurethane with controlled degradation and L-Arg release used as strong adhesive tissue patch for hemostasis and promoting wound healing. Bioact. Mater. 17, 471–487 (2022).

    Google Scholar 

  14. Zhong, G. F. et al. A photo-induced cross-linking enhanced A and B combined multi-functional spray hydrogel instantly protects and promotes of irregular dynamic wound healing. Small 20, e2309568 (2024).

    Google Scholar 

  15. Han, K. et al. Gelatin-based adhesive hydrogel with self-healing, hemostasis, and electrical conductivity. Int J. Biol. Macromol. 183, 2142–2151 (2021).

    Google Scholar 

  16. Zhang, W. et al. Antibacterial coaxial hydro-membranes accelerate diabetic wound healing by tuning surface immunomodulatory functions. Mater. Today Bio. 16, 100395 (2022).

    Google Scholar 

  17. Sharmeen, S. et al. Polyethylene glycol functionalized carbon nanotubes/gelatin-chitosan nanocomposite: an approach for significant drug release. Bioact. Mater. 3, 236–244 (2018).

    Google Scholar 

  18. Chen, X. et al. Efficient drug delivery and anticancer effect of micelles based on vitamin E succinate and chitosan derivatives. Bioact. Mater. 6, 3025–3035 (2021).

    Google Scholar 

  19. Geng, Y. T. et al. Recent advances in carboxymethyl chitosan-based materials for biomedical applications. Carbohydr. Polym. 305, 120555 (2023).

    Google Scholar 

  20. Tran, Q. T. N., Tan, W. S. D., Wong, W. S. F. & Chai, C. L. L. Polypharmacology of andrographolide: beyond one molecule one target. Nat. Prod. Rep. 38, 682–692 (2021).

    Google Scholar 

  21. Dai, Y. et al. Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide. Crit. Rev. Food Sci. 59, S17–S29 (2019).

    Google Scholar 

  22. Islam, M. T. Andrographolide, a new hope in the prevention and treatment of metabolic syndrome. Front. Pharm. 8, 571 (2017).

    Google Scholar 

  23. Veeresham, C., Swetha, E., Rao, A. R. & Asres, K. In vitro and in vivo aldose reductase inhibitory activity of standardized extracts and the major constituent of andrographis paniculata. Phytother. Res. 27, 412–416 (2012).

    Google Scholar 

  24. Zhang, Z. et al. Hypoglycemic and beta cell protective effects of andrographolide analogue for diabetes treatment. J. Transl. Med. 7, 62 (2009).

    Google Scholar 

  25. Messire, G., Serreau, R. & Berteina-Raboin, S. Antioxidant effects of catechins (EGCG), andrographolide, and curcuminoids compounds for skin protection, cosmetics, and dermatological uses: an update. Antioxidants 12, 1317 (2023).

    Google Scholar 

  26. Mussard, E. et al. Andrographis paniculata and its bioactive diterpenoids against inflammation and oxidative stress in keratinocytes. Antioxidants 9, 530 (2020).

    Google Scholar 

  27. Mussard, E. et al. Andrographis paniculata and its bioactive diterpenoids protect dermal fibroblasts against inflammation and oxidative stress. Antioxidants 9, 432 (2020).

    Google Scholar 

  28. Li, C. X. et al. Andrographolide suppresses thymic stromal lymphopoietin in phorbol myristate acetate/calcium ionophore A23187-activated mast cells and 2,4-dinitrofluorobenzene-induced atopic dermatitis-like mice model. Drug Des. Dev. Ther. 10, 781–791 (2016).

    Google Scholar 

  29. Shao, F. L. et al. Andrographolide alleviates imiquimod-induced psoriasis in mice via inducing autophagic proteolysis of MyD88. Biochem. Pharm. 115, 94–103 (2016).

    Google Scholar 

  30. Zhan, J. Y. X. et al. Andrographolide sodium bisulfate prevents UV-induced skin photoaging through inhibiting oxidative stress and inflammation. Mediat. Inflamm. 2016, 3271451 (2016).

    Google Scholar 

  31. Wahid, F., Wang, H.-S., Zhong, C. & Chu, L.-Q. Facile fabrication of moldable antibacterial carboxymethyl chitosan supramolecular hydrogels cross-linked by metal ions complexation. Carbohydr. Polym. 165, 455–461 (2017).

    Google Scholar 

  32. Haas, K. L. & Franz, K. J. Application of metal coordination chemistry to explore and manipulate cell biology. Chem. Rev. 109, 4921–4960 (2009).

    Google Scholar 

  33. Lee, Y., Choi, K., Kim, J. E., Cha, S. & Nam, J. M. Integrating, validating, and expanding information space in single-molecule surface-enhanced Raman spectroscopy for biomolecules. ACS Nano 18, 25359–25371 (2024).

    Google Scholar 

  34. Raza, A. & Wu, W. Metal-organic frameworks in oral drug delivery. Asian J. Pharm. Sci. 19, 100951 (2024).

    Google Scholar 

  35. Septiani, D. A., Hakim, A., Patech, L. R., Zulhalifah, Z. & Siswadi, S. Isolation and identification of andrographolide compounds from the leaves of sambiloto plant (Andrographis paniculata ness). Acta Chim. Asian. 4, 108–113 (2021).

    Google Scholar 

  36. Clarke, D. E., Pashuck, E. T., Bertazzo, S., Weaver, J. V. M. & Stevens, M. M. Self-healing, self-assembled β-sheet peptide-poly(γ-glutamic acid) hybrid hydrogels. J. Am. Chem. Soc. 139, 7250–7255 (2017).

    Google Scholar 

  37. Liu, Y. et al. Asiaticoside-nitric oxide promoting diabetic wound healing through the miRNA-21-5p/TGF-β1/SMAD7/TIMP3 signaling pathway. J. Ethnopharmacol. 319, 117266 (2024).

    Google Scholar 

  38. Li, S., Ding, X., Yan, X., Qian, J. & Tan, Q. ceAF ameliorates diabetic wound healing by alleviating inflammation and oxidative stress via TLR4/NF- κ B and Nrf2 pathways. J. Diab. Res. 2023, 2422303 (2023).

    Google Scholar 

  39. Lan, C. C., Wu, C. S., Huang, S. M., Wu, I. H. & Chen, G. S. High-glucose environment enhanced oxidative stress and increased interleukin-8 secretion from keratinocytes: new insights into impaired diabetic wound healing. Diabetes 62, 2530–2538 (2013).

    Google Scholar 

  40. Suzuki, K. et al. Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function. Proc. Natl. Acad. Sci. USA 108, 13829–13834 (2011).

    Google Scholar 

  41. Ming, T. et al. Mono-phosphorylation at Ser4 of barrier-to-autointegration factor (Banf1) significantly reduces its DNA binding capability by inducing critical changes in its local conformation and DNA binding surface. Phys. Chem. Chem. Phys. 25, 24657–24677 (2023).

    Google Scholar 

  42. Tang, M. et al. Targeting the COMMD4–H2B protein complex in lung cancer. Br. J. Cancer 129, 2014–2024 (2023).

    Google Scholar 

  43. Young, M. J. et al. Nicotine binds to the transthyretin-thyroxine complex and reduces its uptake by placental trophoblasts. Mol. Cell Endocrinol. 549, 111642 (2022).

    Google Scholar 

  44. Ye, P. et al. SOX family transcription factors as therapeutic targets in wound healing: a comprehensive review. Int J. Biol. Macromol. 253, 127243 (2023).

    Google Scholar 

  45. Busik, J. V., Mohr, S. & Grant, M. B. Hyperglycemia-induced reactive oxygen species toxicity to endothelial cells is dependent on paracrine mediators. Diabetes 57, 1952–1965 (2008).

    Google Scholar 

  46. Wang, R. et al. Targeting oxidative damage in diabetic foot ulcers: integrative strategies involving antioxidant drugs and nanotechnologies. Burns Trauma 13, tkaf020 (2025).

    Google Scholar 

  47. Uberoi, A., McCready-Vangi, A. & Grice, E. A. The wound microbiota: microbial mechanisms of impaired wound healing and infection. Nat. Rev. Microbiol 22, 507–521 (2024).

    Google Scholar 

  48. Brandt, B., Abou-Eladab, E. F., Tiedge, M. & Walzel, H. Role of the JNK/c-Jun/AP-1 signaling pathway in galectin-1-induced T-cell death. Cell Death Dis. 1, e23 (2010).

    Google Scholar 

  49. Xu, H. et al. Integrative single-cell RNA-Seq and ATAC-Seq analysis of peripheral mononuclear cells in patients with ankylosing spondylitis. Front. Immunol. 12, 760381 (2021).

    Google Scholar 

  50. Yang, L. et al. Initial IL-10 production dominates the therapy of mesenchymal stem cell scaffold in spinal cord injury. Theranostics 14, 879–891 (2024).

    Google Scholar 

  51. Li, Z. et al. Self-healing hydrogel bioelectronics. Adv. Mater. 36, e2306350 (2024).

    Google Scholar 

  52. Rocasalbas, G. et al. Laccase-assisted formation of bioactive chitosan/gelatin hydrogel stabilized with plant polyphenols. Carbohydr. Polym. 92, 989–996 (2013).

    Google Scholar 

  53. Osi, A. R. et al. Three-dimensional-printable thermo/photo-cross-linked methacrylated chitosan-gelatin hydrogel composites for tissue engineering. ACS Appl. Mater. Inter. 13, 22902–22913 (2021).

    Google Scholar 

  54. Ressler, A. et al. Injectable chitosan-hydroxyapatite hydrogels promote the osteogenic differentiation of mesenchymal stem cells. Carbohydr. Polym. 197, 469–477 (2018).

    Google Scholar 

  55. Liu, T. et al. PSMC2 promotes the progression of gastric cancer via induction of RPS15A/mTOR pathway. Oncogenesis 11, 12 (2022).

    Google Scholar 

  56. Jonkman, J. E. et al. An introduction to the wound healing assay using live-cell microscopy. Cell Adh. Migr. 8, 440–451 (2014).

    Google Scholar 

  57. Liang, C. C., Park, A. Y. & Guan, J. L. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2, 329–333 (2007).

    Google Scholar 

  58. Jin, E. et al. Lemon-derived nanoparticle-functionalized hydrogels regulate macrophage reprogramming to promote diabetic wound healing. J. Nanobiotechnol. 23, 68 (2025).

    Google Scholar 

  59. Gurtner, M. R. N. K. C. A. B. G. C. Wound healing: a cellular perspective. Physiol. Rev. 99, 665–706 (2019).

    Google Scholar 

  60. Wang, X. et al. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res. 45, W356–W360 (2017).

    Google Scholar 

  61. Tang, M., Gandhi, N. S., Burrage, K. & Gu, Y. Adsorption Of Collagen-like Peptides Onto Gold Nanosurfaces. Langmuir 35, 4435–4444 (2019).

    Google Scholar 

  62. Wu, X. et al. The Gut Microbiota-xanthurenic Acid-aromatic Hydrocarbon Receptor Axis Mediates The Anticolitic Effects Of Trilobatin. Adv. Sci. 12, e2412234 (2025).

    Google Scholar 

  63. Wei, J. et al. Targeting FDX1 by trilobatin to inhibit cuproptosis in doxorubicin-induced cardiotoxicity. Br. J. Pharm. 182, 2409–2425 (2025).

    Google Scholar 

  64. Mu, X. et al. Asiaticoside–nitric oxide synergistically accelerate diabetic wound healing by regulating key metabolites and SRC/STAT3 signaling. Burns Trauma 13, tkaf009 (2025).

    Google Scholar 

  65. Ye, P. et al. ACNO hydrogel enhances diabetic wound healing by modulating the Bcl-2/Bax/Caspase-3/PARP pathway. Int Immunopharmacol. 147, 113997 (2025).

    Google Scholar 

Download references