References
-
Breast cancer. https://www.who.int/news-room/fact-sheets/detail/breast-cancer
-
Siegel, R. L., Giaquinto, A. N. & Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 74, 12–49 (2024).
-
Anderson, B. O. et al. The global breast cancer initiative: a strategic collaboration to strengthen health care for non-communicable diseases. Lancet Oncol. 22, 578–581 (2021).
-
Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J. Clin. 71, 209–249 (2021).
-
Villela, L., Velez, A. K., Lopez-Sanc, R., Martínez-Cardona, J. & Hernandez, J. Advantages of drug selective distribution in cancer treatment: Brentuximab Vedotin. Int. J. Pharmacol. 13, 785–807 (2017).
-
Zafar, A., Khatoon, S., Khan, M. J., Abu, J. & Naeem, A. Advancements and limitations in traditional anti-cancer therapies: A comprehensive review of surgery, chemotherapy, radiation therapy, and hormonal therapy. Discov. Oncol. 16, 607 (2025).
-
Kang, L., Gao, Z., Huang, W., Jin, M. & Wang, Q. Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment. Acta Pharm. Sin B. 5, 169–175 (2015).
-
Liang, Y. et al. Nanoplatform-based natural products co-delivery system to surmount cancer multidrug-resistant. J. Controll. Release. 336, 396–409 (2021).
-
Al Bostami, R. D., Abuwatfa, W. H. & Husseini, G. A. Recent advances in nanoparticle-based co-delivery systems for cancer therapy. Nanomaterials (Basel). 12, 2672 (2022).
-
Xiong, R. et al. Selective human Estrogen receptor partial agonists (ShERPAs) for Tamoxifen-Resistant breast cancer. J. Med. Chem. 59, 219–237 (2016).
-
Rondón-Lagos, M., Villegas, V., Rangel, N., Sánchez, M. & Zaphiropoulos, P. Tamoxifen resistance: Emerging molecular targets. IJMS 17, 1357 (2016).
-
Emons, G., Mustea, A. & Tempfer, C. Tamoxifen and endometrial cancer: A Janus-Headed drug. Cancers 12, 2535 (2020).
-
He, J. & Zhang, H. P. Research progress on the anti-tumor effect of naringin. Front. Pharmacol. 14, 1217001 (2023).
-
Alhalmi, A., Amin, S., Ralli, T., Ali, K. S. & Kohli, K. Therapeutic role of naringin in cancer: molecular pathways, synergy with other agents, and nanocarrier innovations. Naunyn Schmiedebergs Arch. Pharmacol. 398, 3595–3615 (2025).
-
Ghanbari-Movahed, M., Jackson, G., Farzaei, M. H. & Bishayee, A. A systematic review of the preventive and therapeutic effects of naringin against human malignancies. Front. Pharmacol. 12, 639840 (2021).
-
Wang, C. et al. Anti-proliferation and pro-apoptotic effects of Diosmetin via modulating cell cycle arrest and mitochondria-mediated intrinsic apoptotic pathway in MDA-MB-231 cells. Med. Sci. Monit. 25, 4639–4647 (2019).
-
Li, J. et al. Effects of citrus-derived Diosmetin on melanoma: Induction of apoptosis andautophagy mediated by PI3K/Akt/mTOR pathway inhibition. ACAMC 25, 921–933 (2025).
-
Shangguan, W. J. et al. Naringin inhibits vascular endothelial cell apoptosis via Endoplasmic reticulum stress– and mitochondrial–mediated pathways and promotes intraosseous angiogenesis in ovariectomized rats. Int. J. Mol. Med. 40, 1741–1749 (2017).
-
Azizpour, M., Changizzadeh, B., Golbashirzadeh, M. & Moradzadegan, A. Exploring the therapeutic potential of naringin and melatonin in breast cancer: A focus on SKBR3 and MCF-7 cell lines. Biomed. Res. Ther. 12, 7109–7117 (2025).
-
Roma, A., Rota, S. G. & Spagnuolo, P. A. Diosmetin induces apoptosis of acute myeloid leukemia cells. Mol. Pharm. 15, 1353–1360 (2018).
-
Raza, W., Meena, A. & Luqman, S. Diosmetin: A dietary flavone as modulator of signaling pathways in cancer progression. Mol. Carcinog. 63, 1627–1642 (2024).
-
Pandey, P. et al. An updated review summarizing the anticancer potential of flavonoids via targeting NF-kB pathway. Front. Pharmacol. 15, 1513422 (2025).
-
Mokhtari, R. B. et al. Combination therapy in combating cancer. Oncotarget 8, 38022–38043 (2017).
-
Djamgoz, M. B. A. Combinatorial therapy of cancer: possible advantages of involving modulators of ionic mechanisms. Cancers (Basel). 14, 2703 (2022).
-
Damodaran, C., Cho, J. Y. & Güngör, C. Therapeutic resistance and combination therapy for cancer: recent developments and future directions. Sci. Rep. 15, 26881 (2025).
-
Foucquier, J. & Guedj, M. Analysis of drug combinations: current methodological landscape. Pharmacol. Res. Perspect. 3, e00149 (2015).
-
Banerjee, V. et al. Synergistic potential of dual Andrographolide and melatonin targeting of metastatic colon cancer cells: using the Chou-Talalay combination index method. Eur. J. Pharmacol. 897, 173919 (2021).
-
Duarte, D. & Vale, N. Evaluation of synergism in drug combinations and reference models for future orientations in oncology. Curr. Res. Pharmacol. Drug Discov. 3, 100110 (2022).
-
Din, F. et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomed. 12, 7291–7309 (2017).
-
He, Q. et al. Tumor microenvironment responsive drug delivery systems. Asian J. Pharm. Sci. 15, 416–448 (2020).
-
Sun, L. et al. Smart nanoparticles for cancer therapy. Sig Transduct. Target. Ther. 8, 418 (2023).
-
Rosenblum, D., Joshi, N., Tao, W., Karp, J. M. & Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 9, 1410 (2018).
-
Deshpande, P. P., Biswas, S. & Torchilin, V. P. Current trends in the use of liposomes for tumor targeting. Nanomed. (Lond). 8, 1509–1528 https://doi.org/10.2217/nnm.13.118 (2013).
-
Hamad, I., Harb, A. A. & Bustanji, Y. Liposome-based drug delivery systems in cancer research: An analysis of global landscape efforts and achievements. Pharmaceutics 16, 400 (2024).
-
Allahou, L. W., Madani, S. Y. & Seifalian, A. Investigating the application of liposomes as drug delivery systems for the diagnosis and treatment of cancer. Int. J. Biomater. 2021, 3041969 (2021).
-
Chen, J. et al. Recent advances and clinical translation of liposomal delivery systems in cancer therapy. Eur. J. Pharm. Sci. 193, 106688 (2024).
-
Zahednezhad, F. et al. Liposomal drug delivery systems for organ-specific cancer targeting: Early promises, subsequent problems, and recent breakthroughs. Expert Opin. Drug Deliv. 21, 1363–1384 (2024).
-
Adler-Moore, J., Proffitt, R. T. & AmBisome liposomal formulation, structure, mechanism of action and pre-clinical experience. J. Antimicrob. Chemother. 49, 21–30 (2002).
-
Barenholz, Y. (Chezy). Doxil®— The first FDA-approved nano-drug: Lessons learned. J. Controll. Release 160, 117–134 (2012).
-
Fulton, M. D. & Najahi-Missaoui, W. Liposomes in cancer therapy: How Did we start and where are we now. IJMS 24, 6615 (2023).
-
Zhao, Z., Jin, G., Ge, Y. & Guo, Z. Naringenin inhibits migration of breast cancer cells via inflammatory and apoptosis cell signaling pathways. Inflammopharmacol 27, 1021–1036 (2019).
-
Moon, S. Y. et al. Inhibition of STAT3 enhances sensitivity to Tamoxifen in Tamoxifen-resistant breast cancer cells. BMC Cancer. 21, 931 (2021).
-
Jalalpour Choupanan, M., Shahbazi, S. & Reiisi, S. Naringenin in combination with quercetin/fisetin shows synergistic anti-proliferative and migration reduction effects in breast cancer cell lines. Mol. Biol. Rep. 50, 7489–7500 (2023).
-
Abdelkarim, M. et al. 3,6-dichloro-1,2,4,5-Tetrazine assayed at high doses in the metastatic breast cancer cell line MDA-MB-231 reduces cell numbers and induces apoptosis. Curr. Bioact. Compd. 16, 546–550 (2020).
-
Limam, I. et al. Tunisian Artemisia Campestris L.: A potential therapeutic agent against myeloma—phytochemical and Pharmacological insights. Plant. Methods 20, 59 (2024).
-
Chou, T. C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 70, 440–446 (2010).
-
Gaballah, A. I. et al. Dexamethasone–tamoxifen combination exerts synergistic therapeutic effects in tamoxifen-resistance breast cancer cells. Biosci. Rep. 44, BSR20240367 (2024).
-
Ling, L. U., Tan, K. B., Lin, H. & Chiu, G. N. C. The role of reactive oxygen species and autophagy in safingol-induced cell death. Cell. Death Dis. 2, e129–e129 (2011).
-
Shyamsivappan, S. et al. Novel phenyl and thiophene dispiro indenoquinoxaline pyrrolidine quinolones induced apoptosis via G1/S and G2/M phase cell cycle arrest in MCF-7 cells. New. J. Chem. 44, 15031–15045 (2020).
-
Alcon, C. et al. ER+ breast cancer strongly depends on MCL-1 and BCL-xL anti-apoptotic proteins. Cells 10, 1659 (2021).
-
Maitani, Y., Soeda, H., Junping, W. & Takayama, K. Modified ethanol injection method for liposomes containing β-sitosterol β-D-glucoside. J. Liposome Res. 11, 115–125 (2001).
-
Wong, M. Y. & Chiu, G. N. C. Simultaneous liposomal delivery of quercetin and vincristine for enhanced estrogen-receptor-negative breast cancer treatment. Anti-Cancer Drugs. 21, 401–410 (2010).
-
Kesharwani, P., Md, S., Alhakamy, N. A., Hosny, K. M. & Haque, A. QbD enabled Azacitidine loaded liposomal nanoformulation and its in vitro evaluation. Polymers 13, 250 (2021).
-
Saad, A. S. Novel spectrophotometric method for selective determination of compounds in ternary mixtures (dual wavelength in ratio spectra). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 147, 257–261 (2015).
-
Borman, P., Elder, D. & Q2(R1. ) Validation of analytical procedures. In ICH Quality Guidelines 127–166 (John Wiley & Sons, Ltd, 2017). https://doi.org/10.1002/9781118971147.ch5
-
Holsæter, A. M. et al. How docetaxel entrapment, vesicle size, zeta potential and stability change with liposome composition–A formulation screening study. Eur. J. Pharm. Sci. 177, 106267 (2022).
-
Sebaaly, C., Greige-Gerges, H., Stainmesse, S., Fessi, H. & Charcosset, C. Effect of composition, hydrogenation of phospholipids and lyophilization on the characteristics of eugenol-loaded liposomes prepared by ethanol injection method. Food Biosci. 15, 1–10 (2016).
-
Sandhu, P. S. et al. Natural lipids enriched self-nano-emulsifying systems for effective co-delivery of Tamoxifen and naringenin: systematic approach for improved breast cancer therapeutics. Nanomed. Nanotechnol. Biol. Med. 13, 1703–1713 (2017).
-
Prathyusha, E. et al. Investigation of ROS generating capacity of curcumin-loaded liposomes and its in vitro cytotoxicity on MCF-7 cell lines using photodynamic therapy. Photodiagn. Photodyn. Ther. 40, 103091 (2022).
-
Wright, R. H. G., Vastolo, V., Oliete, J. Q., Carbonell-Caballero, J. & Beato, M. Global signalling network analysis of luminal T47D breast cancer cells in response to progesterone. Front. Endocrinol. (Lausanne). 13, 888802 (2022).
-
Płonka-Czerw, J., Żyrek, L. & Latocha, M. Changes in the sensitivity of MCF-7 and MCF-7/DX breast cancer cells to cytostatic in the presence of Metformin. Molecules 29, 3531 (2024).
-
Matsuyoshi, S., Shimada, K., Nakamura, M. & Ishida, E. Konishi, N. FADD phosphorylation is critical for cell cycle regulation in breast cancer cells. Br. J. Cancer. 94, 532–539 (2006).
-
Kalabay, M. et al. Investigation of the antitumor effects of Tamoxifen and its ferrocene-linked derivatives on pancreatic and breast cancer cell lines. Pharmaceuticals (Basel). 15, 314 (2022).
-
Chen, C. H. et al. Naringin induces ROS-stimulated G1 cell-cycle arrest and apoptosis in nasopharyngeal carcinoma cells. Environ. Toxicol. 39, 5059–5073 (2024).
-
Ge, A. et al. Diosmetin prevents TGF-β1-induced epithelial-mesenchymal transition via ROS/MAPK signaling pathways. Life Sci. 153, 1–8 (2016).
-
Yuan, Y., Long, H., Zhou, Z., Fu, Y. & Jiang, B. PI3K-AKT-targeting breast cancer treatments: Natural products and synthetic compounds. Biomolecules 13, 93 (2023).
-
Pan, Z. et al. Diosmetin induces apoptosis and protective autophagy in human gastric cancer HGC-27 cells via the PI3K/Akt/FoxO1 and MAPK/JNK pathways. Med. Oncol. 40, 319 (2023).
-
Lee, H. J. & Choi, C. H. Characterization of SN38-resistant T47D breast cancer cell sublines overexpressing BCRP, MRP1, MRP2, MRP3, and MRP4. BMC Cancer. 22, 446 (2022).
-
Farhadi, P. et al. Cell line-directed breast cancer research based on glucose metabolism status. Biomed. Pharmacother. 146, 112526 (2022).
-
Chou, T. C. The combination index (CI < 1) as the definition of synergism and of synergy claims. Synergy 7, 49–50 (2018).
-
Kalkan, F. N. et al. Synergistic and antagonistic drug interactions are prevalent but not conserved across acute myeloid leukemia cell lines. Sci. Rep. 15, 19431 (2025).
-
Benderski, K., Lammers, T. & Sofias, A. M. Analysis of multi-drug cancer nanomedicine. Nat. Nanotechnol. https://doi.org/10.1038/s41565-025-01932-1 (2025).
-
Hu, C. et al. Optimizing drug combination and mechanism analysis based on risk pathway crosstalk in pan cancer. Sci. Data 11, 74 (2024).
-
Ahmed, N. S., Samec, M., Liskova, A., Kubatka, P. & Saso, L. Tamoxifen and oxidative stress: An overlooked connection. Discov. Oncol. 12, 17 (2021).
-
Tan, D., Ma, N., Wang, Y., Li, X. & Xu, M. Reactive oxygen species in cancer: mechanistic insights and therapeutic innovations. Cell. Stress Chaperones 30, 100108 https://doi.org/10.1016/j.cstres.2025.100108 (2025).
-
El-Kersh, D. M. et al. Anti-estrogenic and anti-aromatase activities of citrus peels major compounds in breast cancer. Sci. Rep. 11, 7121 (2021).
-
Tiwari, R. et al. Reactive oxygen species (ROS) and their profound influence on regulating diverse aspects of cancer: A concise review. Drug Dev. Res. 86, e70107 (2025).
-
Yuan, L. et al. Promoting apoptosis, a promising way to treat breast cancer with natural products: A comprehensive review. Front. Pharmacol. 12, 801662 (2022).
-
Utpal, B. K. et al. Exploring natural products as apoptosis modulators in cancers: insights into natural product-based therapeutic strategies. Naunyn-Schmiedeberg’s Arch. Pharmacol. 398, 8189–8214 (2025).
-
Panche, A. N., Diwan, A. D. & Chandra, S. R. Flavonoids: An overview. J. Nutr. Sci. 5, e47 (2016).
-
Imran, M. et al. Exploring the remarkable chemotherapeutic potential of polyphenolic antioxidants in battling various forms of cancer. Molecules 28, 3475 (2023).
-
Bisht, P. et al. Naringin and Temozolomide combination suppressed the growth of glioblastoma cells by promoting cell apoptosis: Network pharmacology, in-vitro assays and metabolomics based study. Front. Pharmacol. 15, 1431085 (2024).
-
Kang, M. H. & Reynolds, C. P. Bcl-2 inhibitors: Targeting mitochondrial apoptotic pathways in cancer therapy. Clin. Cancer Res. 15, 1126–1132 (2009).
-
Bharti, V. et al. BCL-xL Inhibition potentiates cancer therapies by redirecting the outcome of p53 activation from senescence to apoptosis. Cell. Rep. 41, 111826 (2022).
-
Erdogan, S., Doganlar, O., Doganlar, Z. B. & Turkekul, K. Naringin sensitizes human prostate cancer cells to paclitaxel therapy. Prostate Int. 6, 126–135 (2018).
-
Ajji, P. K., Walder, K. & Puri, M. Combination of balsamin and flavonoids induce apoptotic effects in liver and breast cancer cells. Front. Pharmacol. 11, 574496 (2020).
-
Quintieri, L., Palatini, P., Moro, S. & Floreani, M. Inhibition of cytochrome P450 2C8-mediated drug metabolism by the flavonoid Diosmetin. Drug Metab. Pharmacokinet. 26, 559–568 (2011).
-
Effat, H., Abosharaf, H. A. & Radwan, A. M. Combined effects of naringin and doxorubicin on the JAK/STAT signaling pathway reduce the development and spread of breast cancer cells. Sci. Rep. 14, 2824 (2024).
-
Kim, H. & Lee, D. G. Naringin-generated ROS promotes mitochondria-mediated apoptosis in Candida albicans. IUBMB Life. 73, 953–967 (2021).
-
Crosley, P. et al. Procaspase-activating compound-1 synergizes with TRAIL to induce apoptosis in established granulosa cell tumor cell line (KGN) and explanted patient granulosa cell tumor cells in vitro. Int. J. Mol. Sci. 22, 4699 (2021).
-
Abachi, M., Salati, M., Araghi, S., Shirkoohi, R. & Eslamifar, A. Molecular analysis of acquired Tamoxifen resistance in breast cancer cell line. Asian Pac. J. Cancer Biology. 2, 41–49 (2017).
-
Williams, M. M. et al. Intrinsic apoptotic pathway activation increases response to anti-estrogens in luminal breast cancers. Cell. Death Dis. 9, 21 (2018).
-
Albayrak, D. et al. Naringin combined with NF-κB Inhibition and Endoplasmic reticulum stress induces apoptotic cell death via oxidative stress and the PERK/eIF2α/ATF4/CHOP axis in HT29 colon cancer cells. Biochem. Genet. 59, 159–184 (2021).
-
Xu, C. et al. Naringin induces apoptosis of gastric carcinoma cells via blocking the PI3K/AKT pathway and activating pro–death autophagy. Mol. Med. Rep. 24, 772 (2021).
-
Qiao, J. et al. Diosmetin triggers cell apoptosis by activation of the p53/Bcl-2 pathway and inactivation of the Notch3/NF-κB pathway in HepG2 cells. Oncol. Lett. 12, 5122–5128 (2016).
-
Ning, R. et al. Diosmetin inhibits cell proliferation and promotes apoptosis through STAT3/c-Myc signaling pathway in human osteosarcoma cells. Biol. Res. 54, 40 (2021).
-
Gouda, A., Sakr, O. S., Nasr, M. & Sammour, O. Ethanol injection technique for liposomes formulation: An insight into development, influencing factors, challenges and applications. J. Drug Deliv. Sci. Technol. 61, 102174 (2021).
-
Pittiu, A. et al. Production of liposomes by microfluidics: the impact of post-manufacturing dilution on drug encapsulation and lipid loss. Int. J. Pharm. 664, 124641 (2024).
-
Qi, X., Wang, J., Chen, C. & Wang, L. Optimal design of micromixer for preparation of nanoliposomes. Chem. Eng. Process. Process. Intensif. 196, 109677 (2024).
-
Carugo, D., Bottaro, E., Owen, J., Stride, E. & Nastruzzi, C. Liposome production by microfluidics: Potential and limiting factors. Sci. Rep. 6, 25876 (2016).
-
Zhang, G., Wang, L. & Pan, J. Probing the binding of the flavonoid Diosmetin to human serum albumin by multispectroscopic techniques. J. Agric. Food Chem. 60, 2721–2729 (2012).
-
Hakim, A., Loka, I. & Prastiwi, N. New method for isolation of naringin compound from citrus maxima. Nat. Resour. 10, 299–304 (2019).
-
Khan, Z. et al. Preparation and in vitro evaluation of Tamoxifen-conjugated, eco-friendly, agar-based hybrid magnetic nanoparticles for their potential use in breast cancer treatment. ACS Omega. 8, 25808–25816 (2023).
-
Gupta, S. R. N. Determination of lecithin from egg yolk, milk, Soyabean seed, sunflower oil calorimetrically and its FTIR study (2024). https://doi.org/10.5281/ZENODO.12702228
-
Romano, E. et al. Identification of cholesterol in different media by using the FT-IR, FT-Raman and UV–visible spectra combined with DFT calculations. J. Mol. Liq. 403, 124879 (2024).
-
Mohebbi, S., Shariatipour, M., Shafie, B. & Amini, M. M. Encapsulation of Tamoxifen citrate in functionalized mesoporous silica and investigation of its release. J. Drug Deliv. Sci. Technol. 62, 102406 (2021).
-
Taghon, G. J., Rowe, J. B., Kapolka, N. J. & Isom, D. G. Predictable cholesterol binding sites in GPCRs lack consensus motifs. Structure 29, 499–506e3 (2021).
-
Chaki, R. et al. Biocompatible nanocarriers of bioactive flavonoid naringin: Design, formulation, and comprehensive characterization. J. App Pharm. Sci. 15, 117–126 (2025).
-
Xie, D. et al. Convenient and highly efficient adsorption of Diosmetin from lemon peel by magnetic surface molecularly imprinted polymers. J. Mater. Sci. Technol. 211, 159–170 (2025).
-
Halevas, E. G., Avgoulas, D. I., Katsipis, G. & Pantazaki, A. A. Flavonoid-liposomes formulations: Physico-chemical characteristics, biological activities and therapeutic applications. Eur. J. Med. Chem. Rep. 5, 100059 (2022).
-
Mehta, M. et al. Lipid-based nanoparticles for drug/gene delivery: An overview of the production techniques and difficulties encountered in their industrial development. ACS Mater. Au. 3, 600–619 (2023).
-
Sani, A. et al. Revolutionizing anticancer drug delivery: Exploring the potential of tamoxifen-loaded nanoformulations. J. Drug Deliv. Sci. Technol. 86, 104642 (2023).
-
Ashfaq, R. et al. Lipid nanoparticles: an effective tool to improve the bioavailability of nutraceuticals. Int. J. Mol. Sci. 24, 15764 (2023).
-
Midekessa, G. et al. Zeta potential of extracellular vesicles: Toward understanding the attributes that determine colloidal stability. ACS Omega. 5, 16701–16710 (2020).
-
Németh, Z. et al. Quality by Design-Driven zeta potential optimisation study of liposomes with charge imparting membrane additives. Pharmaceutics 14, 1798 (2022).
-
Rizwan, S. B., Dong, Y. D., Boyd, B. J., Rades, T. & Hook, S. Characterisation of bicontinuous cubic liquid crystalline systems of phytantriol and water using cryo field emission scanning electron microscopy (cryo FESEM). Micron 38, 478–485 (2007).
-
Rashidinejad, A., Birch, E. J., Sun-Waterhouse, D. & Everett, D. W. Delivery of green tea catechin and epigallocatechin gallate in liposomes incorporated into low-fat hard cheese. Food Chem. 156, 176–183 (2014).
-
Şahin Bektay, H., Sağıroğlu, A. A., Bozali, K., Güler, E. M. & Güngör, S. The design and optimization of ceramide NP-loaded liposomes to restore the skin barrier. Pharmaceutics 15, 2685 (2023).
-
Dejeu, I. L. et al. Innovative approaches to enhancing the biomedical properties of liposomes. Pharmaceutics 16, 1525 (2024).
-
Lee, Y. & Thompson, D. H. Stimuli-Responsive liposomes for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9 https://doi.org/10.1002/wnan.1450 (2017).
-
Eugster, R., Luciani, P. & Liposomes Bridging the gap from lab to pharmaceuticals. Curr. Opin. Colloid Interface Sci. 75, 101875 (2025).
-
Bai, X., Smith, Z. L., Wang, Y., Butterworth, S. & Tirella, A. Sustained drug release from smart nanoparticles in cancer therapy: A comprehensive review. Micromachines (Basel). 13, 1623 (2022).
-
Mircioiu, C. et al. Mathematical modeling of release kinetics from supramolecular drug delivery systems. Pharmaceutics 11, 140 (2019).
-
Ahmadzadegan, A., Zhang, J., Ardekani, A. & Vlachos, P. Spatiotemporal Measurement of Concentration-Dependent Diffusion Coefficient. (2022). https://doi.org/10.22541/au.164873358.86144442/v1
-
Ahmed, L. et al. Study the using of nanoparticles as drug delivery system based on mathematical models for controlled release. IJLTEMAS 8, 52–56 (2019).
-
Askarizadeh, M., Esfandiari, N., Honarvar, B., Sajadian, S. A. & Azdarpour, A. Kinetic modeling to explain the release of medicine from drug delivery systems. ChemBioEng Rev. 10, 1006–1049 (2023).
-
Sawaftah, N. A., Paul, V., Awad, N. & Husseini, G. A. Modeling of Anti-Cancer drug release kinetics from liposomes and micelles: A review. IEEE Trans. Nanobiosci. 20, 565–576 (2021).
-
AlMajed, Z., Salkho, N. M., Sulieman, H. & Husseini, G. A. Modeling of the in vitro release kinetics of sonosensitive targeted liposomes. Biomedicines 10, 3139 (2022).
-
Izadiyan, Z. et al. Advancements in liposomal nanomedicines: innovative formulations, therapeutic applications, and future directions in precision medicine. Int. J. Nanomed. 20, 1213–1262 (2025).
-
Kozak, A., Lavrih, E., Mikhaylov, G. & Turk, B. Vasiljeva, O. Navigating the clinical landscape of liposomal therapeutics in cancer treatment. Pharmaceutics 17, 276 (2025).
-
Xiao, D. (Zoe) Liposomal drug delivery: comparative kinetics, efficacy, and applications in targeted therapeutics. Theor. Nat. Sci. 69, 140–149 (2025).
-
Farhan, M. Naringin’s prooxidant effect on tumor cells: Copper’s role and therapeutic implications. Pharmaceuticals (Basel). 15, 1431 (2022).
-
Liu, C. Y. et al. Tamoxifen induces apoptosis through cancerous inhibitor of protein phosphatase 2A–dependent phospho-Akt inactivation in Estrogen receptor–negative human breast cancer cells. Breast Cancer Res. 16, 431 (2014).
-
Koosha, S., Mohamed, Z., Sinniah, A. & Alshawsh, M. A. Investigation into the molecular mechanisms underlying the Anti-proliferative and anti-tumorigenesis activities of Diosmetin against HCT-116 human colorectal cancer. Sci. Rep. 9, 5148 (2019).
-
Yen, C., Zhao, F., Yu, Z., Zhu, X. & Li, C. G. Interactions between natural products and Tamoxifen in breast cancer: A comprehensive literature review. Front. Pharmacol. 13, 847113 (2022).
