References
-
Kim, D.-H., Jeong, D., Song, K.-Y. & Seo, K.-H. Comparison of traditional and backslopping methods for kefir fermentation based on physicochemical and microbiological characteristics. Lwt 97, 503–507 (2018).
-
Graham, A. E. & Ledesma-Amaro, R. The microbial food revolution. Nat. Commun. 14, 2231 (2023).
-
Steen, A. D. et al. High proportions of bacteria and archaea across most biomes remain uncultured. ISME J. 13, 3126–3130 (2019).
-
Chen, L. et al. Non-gene-editing microbiome engineering of spontaneous food fermentation microbiota—Limitation control, design control, and integration. Compr. Rev. Food Sci. Food Saf. 22, 1902–1932 (2023).
-
Li, S. et al. Innovative beverage creation through symbiotic microbial communities inspired by traditional fermented beverages: Current status, challenges and future directions. Crit. Rev. Food Sci. Nutr. 64, 10456–10483 (2024).
-
Mardis, E. R. The impact of next-generation sequencing technology on genetics. Trends Genet. 24, 133–141 (2008).
-
Goodwin, K. D. et al. DNA sequencing as a tool to monitor marine ecological status. Front. Mar. Sci. 4, 107 (2017).
-
Garg, D., Patel, N., Rawat, A. & Rosado, A. S. Cutting edge tools in the field of soil microbiology. Curr. Res. Microb. Sci. 6, 100226 (2024).
-
Zhang, E. et al. A genomics-based investigation of acetic acid bacteria across a global fermented food metagenomics dataset. iScience 28 (2025).
-
Leech, J. et al. Fermented-food metagenomics reveals substrate-associated differences in taxonomy and health-associated and antibiotic resistance determinants. MSystems 5, 00522–00520 (2020).
-
Carlino, N. et al. Unexplored microbial diversity from 2,500 food metagenomes and links with the human microbiome. Cell 187, 5775–5795. e5715 (2024).
-
Breselge, S. et al. The core microbiomes and associated metabolic potential of water kefir as revealed by pan multi-omics. Commun. Biol. 8, 415 (2025).
-
Landis, E. A. et al. Microbial diversity and interaction specificity in kombucha tea fermentations. Msystems 7, e00157–00122 (2022).
-
Junge, K., Cameron, K. & Nunn, B. in Microbial diversity in the genomic era 197-216 (Elsevier, 2019).
-
Bashiardes, S., Zilberman-Schapira, G. & Elinav, E. Use of metatranscriptomics in microbiome research. Bioinforma. Biol. Insights 10, S34610 (2016).
-
Zhao, Y., Wu, Z., Miyao, S. & Zhang, W. Unraveling the flavor profile and microbial roles during industrial Sichuan radish paocai fermentation by molecular sensory science and metatranscriptomics. Food Biosci. 48, 101815 (2022).
-
Xiao, M. et al. Metatranscriptomics reveals the gene functions and metabolic properties of the major microbial community during Chinese Sichuan Paocai fermentation. Food Microbiol. 98, 103573 (2021).
-
Zhao, Y. et al. Integrating metabolomics and metatranscriptomics to explore the formation pathway of aroma-active volatile phenolics and metabolic profile during industrial radish paocai fermentation. Food Res. Int. 167, 112719 (2023).
-
Pan, Y. et al. Metatranscriptomics unravel composition, drivers, and functions of the active microorganisms in light-flavor liquor fermentation. Microbiol. Spectr. 10, e02151–02121 (2022).
-
Kim, K. H., Chun, B. H., Kim, J. & Jeon, C. O. Identification of biogenic amine-producing microbes during fermentation of ganjang, a Korean traditional soy sauce, through metagenomic and metatranscriptomic analyses. Food Control 121, 107681 (2021).
-
Zhang, L. et al. Metatranscriptomic approach reveals the functional and enzyme dynamics of core microbes during noni fruit fermentation. Food Res. Int. 141, 109999 (2021).
-
Zhang, L. et al. Acetobacter sp. improves the undesirable odors of fermented noni (Morinda citrifolia L.) juice. Food Chem. 401, 134126 (2023).
-
Bikel, S. et al. Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome. Computational Struct. Biotechnol. J. 13, 390–401 (2015).
-
Pedersen, S., Bloch, P. L., Reeh, S. & Neidhardt, F. C. Patterns of protein synthesis in E. coli: a catalog of the amount of 140 individual proteins at different growth rates. Cell 14, 179–190 (1978).
-
Pandey, A. & Lewitter, F. Nucleotide sequence databases: a gold mine for biologists. Trends Biochemical Sci. 24, 276–280 (1999).
-
Yang, L., Fan, W. & Xu, Y. Metaproteomics insights into traditional fermented foods and beverages. Compr. Rev. Food Sci. Food Saf. 19, 2506–2529 (2020).
-
Belda, I. et al. Microbial contribution to wine aroma and its intended use for wine quality improvement. Molecules 22, 189 (2017).
-
Huang, R., Han, M., Meng, L. & Chen, X. Transcriptome-wide discovery of coding and noncoding RNA-binding proteins. Proc. Natl. Acad. Sci. 115, E3879–E3887 (2018).
-
Ribeiro, D. M. et al. Protein complex scaffolding predicted as a prevalent function of long non-coding RNAs. Nucleic Acids Res. 46, 917–928 (2018).
-
Farghal, H. H., Mansour, S. T., Khattab, S., Zhao, C. & Farag, M. A. A comprehensive insight on modern green analyses for quality control determination and processing monitoring in coffee and cocoa seeds. Food Chem. 394, 133529 (2022).
-
Wishart, D. S. Metabolomics: applications to food science and nutrition research. Trends Food Sci. Technol. 19, 482–493 (2008).
-
Zhang, X., Zheng, Y., Feng, J., Zhou, R. & Ma, M. Integrated metabolomics and high-throughput sequencing to explore the dynamic correlations between flavor related metabolites and bacterial succession in the process of Mongolian cheese production. Food Res. Int. 160, 111672 (2022).
-
Zhou, X. et al. The correlation mechanism between dominant bacteria and primary metabolites during fermentation of red sour soup. Foods 11, 341 (2022).
-
Santiago-Rodriguez, T. M. & Hollister, E. B. in Seminars in perinatology. 151456 (Elsevier).
-
Lagier, J.-C. et al. Culturing the human microbiota and culturomics. Nat. Rev. Microbiol. 16, 540–550 (2018).
-
Niccum, B. A., Kastman, E. K., Kfoury, N., Robbat, A. Jr. & Wolfe, B. E. Strain-level diversity impacts cheese rind microbiome assembly and function. Msystems 5, 00149–00120 (2020).
-
Karim, A. Y. Isolation and characterization of lactic acid bacteria with probiotic potential from traditional fermented special Kurdish cheese (Zhazhi) in Kurdistan region, Iraq. Cell. Mol. Biol. 69, 75–83 (2023).
-
Zhang, J. et al. Cultivating the uncultured: Harnessing the “sandwich agar plate” approach to isolate heme-dependent bacteria from marine sediment. Mlife 3, 143–155 (2024).
-
Yoon, S. et al. Multifunctional probiotic and functional properties of Lactiplantibacillus plantarum LRCC5314, isolated from kimchi. J. Microbiol. Biotechnol. 32, 72 (2021).
-
Xu, J. et al. Culturing bacteria from fermentation pit muds of Baijiu with culturomics and amplicon-based metagenomic approaches. Front. Microbiol. 11, 1223 (2020).
-
Li, Y. et al. Culturomics: A promising approach for exploring bacterial diversity in natural fermented milk. Food Biosci. 62, 105383 (2024).
-
Calabrese, F. M. et al. Metabolic framework of spontaneous and synthetic sourdough metacommunities to reveal microbial players responsible for resilience and performance. Microbiome 10, 148 (2022).
-
Wang, S., Wu, Q., Nie, Y., Wu, J. & Xu, Y. Construction of synthetic microbiota for reproducible flavor compound metabolism in Chinese light-aroma-type liquor produced by solid-state fermentation. Appl. Environ. Microbiol. 85, e03090–03018 (2019).
-
Zhao, M. et al. An integrated metagenomics/metaproteomics investigation of the microbial communities and enzymes in solid-state fermentation of Pu-erh tea. Sci. Rep. 5, 10117 (2015).
-
Wen, L. et al. Applications of multi-omics techniques to unravel the fermentation process and the flavor formation mechanism in fermented foods. Crit. Rev. Food Sci. Nutr. 64, 8367–8383 (2024).
-
Tan, M. S., Cheah, P.-L., Chin, A.-V., Looi, L.-M. & Chang, S.-W. A review on omics-based biomarkers discovery for Alzheimer’s disease from the bioinformatics perspectives: statistical approach vs machine learning approach. Computers Biol. Med. 139, 104947 (2021).
-
Khorraminezhad, L., Leclercq, M., Droit, A., Bilodeau, J.-F. & Rudkowska, I. Statistical and machine-learning analyses in nutritional genomics studies. Nutrients 12, 3140 (2020).
-
Li, S., Han, Y., Yan, M., Qiu, S. & Lu, J. Machine learning and multi-omics integration to reveal biomarkers and microbial community assembly differences in abnormal stacking fermentation of sauce-flavor baijiu. Foods 14, 245 (2025).
-
Arrigan, D., Kothe, C. I., Oliverio, A., Evans, J. D. & Wolfe, B. E. Novel fermentations integrate traditional practice and rational design of fermented-food microbiomes. Curr. Biol. 34, R1094–R1108 (2024).
-
Sawant, S. S., Park, H.-Y., Sim, E.-Y., Kim, H.-S. & Choi, H.-S. Microbial Fermentation in Food: Impact on Functional Properties and Nutritional Enhancement—A Review of Recent Developments. Fermentation (Basel) 11 (2025).
-
Yassunaka Hata, N. N., Surek, M., Sartori, D., Vassoler Serrato, R. & Aparecida Spinosa, W. Role of acetic acid bacteria in food and beverages. Food Technol. Biotechnol. 61, 85–103 (2023).
-
Landete, J. M. A review of food-grade vectors in lactic acid bacteria: from the laboratory to their application. Crit. Rev. Biotechnol. 37, 296–308 (2017).
-
Zhang, K. et al. The regulation of key flavor of traditional fermented food by microbial metabolism: A review. Food Chem.: X 19, 100871 (2023).
-
Wang, Y., Zhang, C., Liu, F., Jin, Z. & Xia, X. Ecological succession and functional characteristics of lactic acid bacteria in traditional fermented foods. Crit. Rev. Food Sci. Nutr. 63, 5841–5855 (2023).
-
Zheng, Z. et al. Effects of assorted radishes on the flavor development and bacterial community succession of radish paocai during fermentation. LWT 187, 115377 (2023).
-
Lynch, K. M., Zannini, E., Wilkinson, S., Daenen, L. & Arendt, E. K. Physiology of acetic acid bacteria and their role in vinegar and fermented beverages. Compr. Rev. Food Sci. Food Saf. 18, 587–625 (2019).
-
Jayaram, V. B., Cuyvers, S., Verstrepen, K. J., Delcour, J. A. & Courtin, C. M. Succinic acid in levels produced by yeast (Saccharomyces cerevisiae) during fermentation strongly impacts wheat bread dough properties. Food Chem. 151, 421–428 (2014).
-
Li, Z., Zheng, M., Zheng, J. & Gänzle, M. G. Bacillus species in food fermentations: An underappreciated group of organisms for safe use in food fermentations. Curr. Opin. Food Sci. 50, 101007 (2023).
-
Wu, G. et al. A core microbiome signature as an indicator of health. Cell 187, 6550–6565. e6511 (2024).
-
Ferremi Leali, N. et al. Reconstruction of simplified microbial consortia to modulate sensory quality of kombucha tea. Foods 11, 3045 (2022).
-
Black, C., Parker, M., Siebert, T., Capone, D. & Francis, I. Terpenoids and their role in wine flavour: recent advances. Aust. J. Grape Wine Res. 21, 582–600 (2015).
-
Saerens, S. M., Delvaux, F. R., Verstrepen, K. J. & Thevelein, J. M. Production and biological function of volatile esters in Saccharomyces cerevisiae. Microb. Biotechnol. 3, 165–177 (2010).
-
Tran, T. et al. Use of a minimal microbial consortium to determine the origin of kombucha flavor. Front. Microbiol. 13, 836617 (2022).
-
Bourrie, B. C. et al. Use of reconstituted kefir consortia to determine the impact of microbial composition on kefir metabolite profiles. Food Res. Int. 173, 113467 (2023).
-
Li, R. et al. Enhancing the proportion of gluconic acid with a microbial community reconstruction method to improve the taste quality of Kombucha. Lwt 155, 112937 (2022).
-
Zhang, Q. et al. Bioaugmentation by Pediococcus acidilactici AAF1-5 improves the bacterial activity and diversity of cereal vinegar under solid-state fermentation. Front. Microbiol. 11, 603721 (2021).
-
Bao, R. et al. Shortening fermentation period and quality improvement of fermented fish, Chouguiyu, by co-inoculation of Lactococcus lactis M10 and Weissella cibaria M3. Front. Microbiol. 9, 3003 (2018).
-
Eng, A. & Borenstein, E. Microbial community design: methods, applications, and opportunities. Curr. Opin. Biotechnol. 58, 117–128 (2019).
-
Kong, W., Meldgin, D. R., Collins, J. J. & Lu, T. Designing microbial consortia with defined social interactions. Nat. Chem. Biol. 14, 821–829 (2018).
-
Wang, H. et al. Core microbes identification and synthetic microbiota construction for the production of Xiaoqu light-aroma Baijiu. Food Res. Int. 183, 114196 (2024).
-
Huang, X., Xin, Y. & Lu, T. A systematic, complexity-reduction approach to dissect the kombucha tea microbiome. Elife 11, e76401 (2022).
-
Stadie, J., Gulitz, A., Ehrmann, M. A. & Vogel, R. F. Metabolic activity and symbiotic interactions of lactic acid bacteria and yeasts isolated from water kefir. Food Microbiol. 35, 92–98 (2013).
-
Liu, Z. et al. Screening of strains from pickles and evaluation of characteristics of different methods of fast and low salt fermented mustard leaves (Brassica juncea var. multiceps). Food Res. Int. 201, 115557 (2025).
-
Jiao, W. et al. Identification of core microbiota in the fermented grains of a Chinese strong-flavor liquor from Sichuan. Lwt 158, 113140 (2022).
-
Zhao, X., Kerpes, R. & Becker, T. Evaluation of microtiter plate as a high-throughput screening platform for beer fermentation. Eur. Food Res. Technol. 248, 1831–1846 (2022).
-
Li, X., You, B., Shum, H. C. & Chen, C.-H. Future foods: Design, fabrication and production through microfluidics. Biomaterials 287, 121631 (2022).
-
Motoshima, H., Fujioka, I. & Uchida, K. Identification of dominant species common to kefir grains from seven origins for kefir grain reconstruction. J. Dairy Sci. (2025).
-
Wu, L. et al. Improving the aroma profile of inoculated fermented sausages by constructing a synthetic core microbial community. J. Food Sci. 88, 4388–4402 (2023).
-
Degenhardt, R. et al. Detection of enteric viruses and core microbiome analysis in artisanal colonial salami-type dry-fermented sausages from santa catarina, Brazil. Foods 10, 1957 (2021).
-
Huang, T. et al. Constructing a defined starter for multispecies vinegar fermentation via evaluation of the vitality and dominance of functional microbes in an autochthonous starter. Appl. Environ. Microbiol. 88, e02175–02121 (2022).
-
Zhou, Q. et al. Unraveling the core bacterial community responsible for quality and flavor improvement of the radish paocai during spontaneous fermentation. Food Biosci. 55, 102956 (2023).
-
Zhao, N. et al. Illumination and reconstruction of keystone microbiota for reproduction of key flavor-active volatile compounds during paocai (a traditional fermented vegetable) fermentation. Food Biosci. 56, 103148 (2023).
-
An, F. et al. Investigating the core microbiota and its influencing factors in traditional Chinese pickles. Food Res. Int. 147, 110543 (2021).
-
Zong, C. et al. Construction and metabolomics of silage-derived lactic acid bacteria-based consortia. J. Appl. Microbiol. 136, lxaf178 (2025).
