Enhancing photothermal therapy effectiveness via tartrazine-induced optical clearing of biological tissues

enhancing-photothermal-therapy-effectiveness-via-tartrazine-induced-optical-clearing-of-biological-tissues
Enhancing photothermal therapy effectiveness via tartrazine-induced optical clearing of biological tissues

Data availability

The datasets analyzed during the current study available from the corresponding author on reasonable request.

References

  1. Diederich, C. J. Thermal ablation and high-temperature thermal therapy: overview of technology and clinical implementation. Int. J. Hyperth. 21, 745–753 (2005).

    Google Scholar 

  2. Ding, Q. et al. Rabies virus targeting NIR-II phototheranostics. J. Am. Chem. Soc. 147, 16661–16673 (2025).

    Google Scholar 

  3. Huang, X., Jain, P. K. & El-Sayed, I. H. El-Sayed, M. A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 23, 217–228 (2008).

    Google Scholar 

  4. Han, H. S. & Choi, K. Y. Advances in Nanomaterial-Mediated photothermal cancer therapies: toward clinical applications. Biomedicines 9, 305 (2021).

    Google Scholar 

  5. Perini, G. et al. Impact of different 2D materials on the efficacy of photothermal and photodynamic therapy in 3D-bioprinted breast cancer. Nanoscale 17, 3221–3235 (2025).

    Google Scholar 

  6. Ding, Q. et al. Precision phototherapy enabled by decoding complex microenvironments. Acc. Chem. Res. 58, 3167–3183 (2025).

    Google Scholar 

  7. Jaque, D. et al. Nanoparticles for photothermal therapies. Nanoscale 6, 9494–9530 (2014).

    Google Scholar 

  8. Chen, Q. et al. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint Blockade for effective cancer immunotherapy. Nat. Commun. 7, 13193 (2016).

    Google Scholar 

  9. Perini, G. et al. Slow and steady wins the race: fractionated near-infrared treatment empowered by graphene-enhanced 3D scaffolds for precision oncology. Mater. Today Bio. 25, 100986 (2024).

    Google Scholar 

  10. Ding, Q. et al. Dual-laser 808 and 1,064 nm strategy that circumvents the Achilles’ heel of photothermal therapy. Proceedings of the National Academy of Sciences 122, e2503574122 (2025).

  11. Cai, Y., Lv, Z., Chen, X., Jin, K. & Mou, X. Recent advances in biomaterials based near-infrared mild photothermal therapy for biomedical application: A review. Int. J. Biol. Macromol. 278, 134746 (2024).

    Google Scholar 

  12. Xu, N. et al. Biomedical applications and prospects of temperature-orchestrated photothermal therapy. MedComm – Biomaterials Appl. 1, e25 (2022).

    Google Scholar 

  13. Liu, Y., Bhattarai, P., Dai, Z. & Chen, X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 48, 2053–2108 (2019).

    Google Scholar 

  14. Cheng, L., Wang, C., Feng, L., Yang, K. & Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 114, 10869–10939 (2014).

    Google Scholar 

  15. Mei, L. et al. Nanozymes for Non-Neoplastic diseases: catalytic therapy redefined. Aggregate 6, e70150 (2025).

  16. Costantini, I., Cicchi, R., Silvestri, L., Vanzi, F. & Pavone, F. S. In-vivo and ex-vivo optical clearing methods for biological tissues: review. Biomed. Opt. Express. 10, 5251 (2019).

    Google Scholar 

  17. Amchova, P., Siska, F. & Ruda-Kucerova, J. Safety of tartrazine in the food industry and potential protective factors. Heliyon 10, e38111 (2024).

    Google Scholar 

  18. Miller, D. A. et al. Enhanced penetration depth in optical coherence tomography and photoacoustic microscopy in vivo enabled by absorbing dye molecules. Optica 12, 24 (2025).

    Google Scholar 

  19. Shabbir, M. W., Phillips, M., Asante-Asare, D. & Ou, Z. Transient optical clearing using absorbing molecules for ex-vivo and in-vivo imaging. BioRxiv Preprint at. https://doi.org/10.1101/2025.04.02.646849 (2025).

    Google Scholar 

  20. Garbelli, M. & Chen, Z. Food dye for optical clearing and in vivo imaging. Kidney Int. 107, 776–778 (2025).

    Google Scholar 

  21. Keck, C. H. C. et al. Achieving transient and reversible optical transparency in live mice with tartrazine. Nat. Protoc. https://doi.org/10.1038/s41596-025-01187-z (2025).

    Google Scholar 

  22. De Maio, F. et al. 3D-printed graphene polylactic acid devices resistant to SARS-CoV-2: Sunlight-mediated sterilization of additive manufactured objects. Carbon N Y. 194, 34–41 (2022).

    Google Scholar 

  23. Ou, Z. et al. Achieving optical transparency in live animals with absorbing molecules. Sci. (1979). 385, eadm6869 (2024).

    Google Scholar 

  24. Welvaert, M. & Rosseel, Y. On the definition of Signal-To-Noise ratio and Contrast-To-Noise ratio for fMRI data. PLoS One. 8, e77089 (2013).

    Google Scholar 

  25. Gu, W. Y., Yao, H., Vega, A. L. & Flagler, D. Diffusivity of ions in agarose gels and intervertebral disc: effect of porosity. Ann. Biomed. Eng. 32, 1710–1717 (2004).

    Google Scholar 

  26. Shaw, C., Hossain, K., Riviere-Cazaux, C., Burns, T. & Khan, M. R. Convection-enhanced diffusion and directed withdrawal of methylene blue in agarose hydrogel using finite element analyses. bioRxiv 10.27.514109 Preprint at (2022). https://doi.org/10.1101/2022.10.27.514109 (2022).

  27. Menikou, G. & Damianou, C. Acoustic and thermal characterization of agar based phantoms used for evaluating focused ultrasound exposures. J. Ther. Ultrasound. 5, 14 (2017).

    Google Scholar 

  28. Ed-Daoui, A., Benelmostafa, M. & Dahmani, M. Study of the viscoelastic properties of the agarose gel. Mater. Today Proc. 13, 746–751 (2019).

    Google Scholar 

  29. Minopoli, A. et al. Viscoelastic interpretation of AFM nanoindentation for predicting nanoscale stiffness in soft biomaterials. Polym. Test. 153, 109026 (2025).

    Google Scholar 

  30. Distler, T., Schaller, E., Steinmann, P., Boccaccini, A. R. & Budday, S. Alginate-based hydrogels show the same complex mechanical behavior as brain tissue. J. Mech. Behav. Biomed. Mater. 111, 103979 (2020).

    Google Scholar 

  31. Fannon, O. M., Bithell, A., Whalley, B. J. & Delivopoulos, E. A fiber alginate Co-culture platform for the differentiation of mESC and modeling of the neural tube. Front Neurosci 14, 524346 (2021).

  32. Naglič, P., Zelinskyi, Y., Likar, B. & Bürmen, M. Determination of refractive index, size, and solid content of monodisperse polystyrene microsphere suspensions for the characterization of optical phantoms. Biomed. Opt. Express. 11, 1901 (2020).

    Google Scholar 

  33. He, G. S., Qin, H. Y. & Zheng, Q. Rayleigh, Mie, and Tyndall scatterings of polystyrene microspheres in water: Wavelength, size, and angle dependences. J. Appl. Phys. 105, 023110 (2009).

    Google Scholar 

  34. Arslan, H. & Dolukan, Y. B. Optical penetration depths and fluence distributions in chicken breast and liver tissues. Opt. Spectrosc. 127, 763–768 (2019).

    Google Scholar 

  35. Wang, P. et al. Enhancing the efficiency of Mild-Temperature photothermal therapy for cancer assisting with various strategies. Pharmaceutics 14, 2279 (2022).

    Google Scholar 

  36. Jia, C. et al. Tartrazine-enabled optical clearing for in vivo optical resolution photoacoustic microscopy. Biomed. Opt. Express. 16, 2504 (2025).

    Google Scholar 

  37. Miller, D. A. et al. Enhanced penetration depth in optical coherence tomography and photoacoustic microscopy in vivo enabled by absorbing dye molecules. Optica 12, 24 (2025).

    Google Scholar 

  38. Visternicu, M. et al. Toxicological effects of tartrazine exposure: A review of in vitro and animal studies with human health implications. Toxics 13, 771 (2025).

    Google Scholar 

  39. Zand, A. et al. The impact of tartrazine on DNA Methylation, histone Deacetylation, and genomic stability in human cell lines. Nutrients 17, 913 (2025).

    Google Scholar 

Download references

Acknowledgements

We acknowledge financial support under the National Recovery and Resilience Plan (NRRP), Mission 4, Component 2, Investment 1.1, Call for tender No. 1409 published on 14.9.2022 by the Italian Ministry of University and Research (MUR), funded by the European Union – NextGenerationEU– Project Title Graphene Quantum Dots-Mediated Photoimmunotherapy Against Glioblastoma in a Bioprinted Mini-Brain-on-Chip – CUP B53D23031470001.VP acknowledges financial support from Piano Nazionale per gli Investimenti Complementari al PNRR (PNC – Avviso D.D. n. 931 del 06/06/2022), Project D3 4 HEALTH – Digital Driven Diagnostics, prognostics and therapeutics for sustainable Health care -PNC0000001, CUP B53C22006100001.MP acknowledges financial support from AIRC under IG 2024—ID. 30398 project.GP acknowledges financial support under the National Recovery and Resilience Plan (NRRP), Mission 4, Component 2, Investment 1.1, Call for tender No. 1409 published on 14.9.2022 by the Italian Ministry of University and Research (MUR), funded by the European Union – NextGenerationEU– Project Title Graphene Quantum Dots-Mediated Photoimmunotherapy Against Glioblastoma in a Bioprinted Mini-Brain-on-Chip – CUP J53D23017940001.We acknowledge the contribution of 3D Bioprinting Research Core Facility G-STeP of the Fondazione Policlinico Universitario A. Gemelli IRCCS for sample processing and the G-STeP Microscopy Facility of the Fondazione Policlinico Universitario A. Gemelli IRCCS for microscopy experiments.

Funding

We acknowledge financial support under the National Recovery and Resilience Plan (NRRP), Mission 4, Component 2, Investment 1.1, Call for tender No. 1409 published on 14.9.2022 by the Italian Ministry of University and Research (MUR), funded by the European Union – NextGenerationEU– Project Title Graphene Quantum Dots-Mediated Photoimmunotherapy Against Glioblastoma in a Bioprinted Mini-Brain-on-Chip – CUP B53D23031470001. VP acknowledges financial support from Piano Nazionale per gli Investimenti Complementari al PNRR (PNC – Avviso D.D. n. 931 del 06/06/2022), Project D3 4 HEALTH – Digital Driven Diagnostics, prognostics and therapeutics for sustainable Health care -PNC0000001, CUP B53C22006100001. MP acknowledges financial support from AIRC under IG 2024—ID. 30398 project. GP acknowledges financial support under the National Recovery and Resilience Plan (NRRP), Mission 4, Component 2, Investment 1.1, Call for tender No. 1409 published on 14.9.2022 by the Italian Ministry of University and Research (MUR), funded by the European Union – NextGenerationEU– Project Title Graphene Quantum Dots-Mediated Photoimmunotherapy Against Glioblastoma in a Bioprinted Mini-Brain-on-Chip – CUP J53D23017940001. We acknowledge the contribution of 3D Bioprinting Research Core Facility G-STeP of the Fondazione Policlinico Universitario A. Gemelli IRCCS for sample processing and the G-STeP Microscopy Facility of the Fondazione Policlinico Universitario A. Gemelli IRCCS for microscopy experiments.

Author information

Authors and Affiliations

  1. Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome, 00168, Italy

    Antonio Minopoli, Davide Evangelista, Matteo Marras, Giordano Perini, Marco De Spirito & Massimiliano Papi

  2. Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, 00168, Italy

    Antonio Minopoli, Davide Evangelista, Matteo Marras, Giordano Perini, Alberto Augello, Marco De Spirito & Massimiliano Papi

  3. Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, Rome, 00185, Italy

    Alberto Augello & Valentina Palmieri

Authors

  1. Antonio Minopoli
  2. Davide Evangelista
  3. Matteo Marras
  4. Giordano Perini
  5. Alberto Augello
  6. Valentina Palmieri
  7. Marco De Spirito
  8. Massimiliano Papi

Contributions

M.P. and V.P. conceived and designed the study.A.M., A.A., D.E. and M.M. performed the experiments and collected the data.A.M. and G.P. developed the methodology and performed formal analysis.A.M. contributed software and validation.A.M., G.P. handled data curation and visualization.A.M., D.E., and M.M. interpreted the results and drafted the manuscript.V.P., M.P., and M.D.S. supervised the project and acquired funding.All authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Valentina Palmieri or Marco De Spirito.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minopoli, A., Evangelista, D., Marras, M. et al. Enhancing photothermal therapy effectiveness via tartrazine-induced optical clearing of biological tissues. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38616-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-026-38616-2