Connolly, B. et al. SERPINA1 mRNA as a treatment for alpha-1 antitrypsin deficiency. J. Nucl. Acids 2018, 7 (2018).
Kelly, E. et al. Alpha-1 antitrypsin deficiency. Respir. Med. 104(6), 763–772 (2010).
Ferrarotti, I. et al. Identification and characterisation of eight novel SERPINA1 Null mutations. Orphanet J. Rare Dis. 9, 172–172 (2014).
Lusch, A. et al. Development and analysis of alpha 1-antitrypsin neoglycoproteins: The impact of additional N-glycosylation sites on serum half-life. Mol. Pharm. 10(7), 2616–2629 (2013).
Silberstein, D. Z. et al. An oxidation-resistant, recombinant alpha-1 antitrypsin produced in Nicotiana benthamiana. Free Radical Biol. Med. 120, 303–310 (2018).
Stoller, J. K. & Aboussouan, L. S. A review of α1-antitrypsin deficiency. Am. J. Respir. Crit. Care Med. 185(3), 246–259 (2012).
Stockley, R. A. & Turner, A. M. alpha-1-Antitrypsin deficiency: Clinical variability, assessment, and treatment. Trends Mol. Med. 20(2), 105–115 (2014).
Brantly, M. L., Lascano, J. E. & Shahmohammadi, A. Intravenous alpha-1 antitrypsin therapy for alpha-1 antitrypsin deficiency: The current state of the evidence. Chron. Obstructive Pulm. Dis. (Miami, Fla.) 6(1), 100–114 (2018).
Amann, T. et al. Glyco-engineered CHO cell lines producing alpha-1-antitrypsin and C1 esterase inhibitor with fully humanized N-glycosylation profiles. Metab. Eng. 52, 143–152 (2019).
Morifuji, Y. et al. Expression, purification, and characterization of recombinant human α1-antitrypsin produced using silkworm-baculovirus expression system. Mol. Biotechnol. 60(12), 924–934 (2018).
Soucie, J. M. et al. Evidence for the transmission of parvovirus B19 in patients with bleeding disorders treated with plasma-derived factor concentrates in the era of nucleic acid test screening. Transfusion 53(6), 1217–1225 (2013).
Zhang, L. et al. Expression and characterization of recombinant human alpha-antitrypsin in transgenic rice seed. J. Biotechnol. 164(2), 300–308 (2013).
Tawara, I. et al. Alpha-1-antitrypsin monotherapy reduces graft-versus-host disease after experimental allogeneic bone marrow transplantation. Proc. Natl. Acad. Sci. U.S.A. 109(2), 564–569 (2012).
Janciauskiene, S. & Welte, T. Well-known and less well-known functions of alpha-1 antitrypsin. Its role in chronic obstructive pulmonary disease and other disease developments. Ann. Am. Thoracic Soc. 13, S280–S288 (2016).
Jonigk, D. et al. Anti-inflammatory and immunomodulatory properties of α1-antitrypsin without inhibition of elastase. Proc. Natl. Acad. Sci. U.S.A. 110(37), 15007–15012 (2013).
Stockley, R. A. The multiple facets of alpha-1-antitrypsin. Ann. Transl. Med. 3(10), 130 (2015).
Grimstein, C. et al. Alpha-1 antitrypsin protein and gene therapies decrease autoimmunity and delay arthritis development in mouse model. J. Transl. Med. 9, 21–21 (2011).
Joosten, L. A. B. et al. Alpha-1-anti-trypsin-Fc fusion protein ameliorates gouty arthritis by reducing release and extracellular processing of IL-1β and by the induction of endogenous IL-1Ra. Ann. Rheum. Dis. 75(6), 1219–1227 (2016).
Grimstein, C. et al. Combination of alpha-1 antitrypsin and doxycycline suppresses collagen-induced arthritis. J. Gene Med. 12(1), 35–44 (2010).
Toldo, S. et al. Alpha-1 antitrypsin inhibits caspase-1 and protects from acute myocardial ischemia–reperfusion injury. J. Mol. Cell. Cardiol. 51(2), 244–251 (2011).
Lewis, E. C. et al. alpha1-Antitrypsin monotherapy induces immune tolerance during islet allograft transplantation in mice. Proc. Natl. Acad. Sci. U.S.A. 105(42), 16236–16241 (2008).
Bellacen, K. et al. Revascularization of Pancreatic Islet Allografts is Enhanced by α-1-Antitrypsin under Anti-Inflammatory Conditions. Cell Transplant. 22(11), 2119–2133 (2013).
Moldthan, H. L. et al. Alpha 1-antitrypsin therapy mitigated ischemic stroke damage in rats. J. Stroke Cerebrovasc. Dis. 23(5), e355–e363 (2014).
Jedicke, N. et al. Alpha-1-antitrypsin inhibits acute liver failure in mice. Hepatology 59(6), 2299–2308 (2014).
Lee, K. J. et al. N-glycan analysis of human α1-antitrypsin produced in Chinese hamster ovary cells. Glycoconj. J. 30(5), 537–547 (2013).
Gerngross, T. U. Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat. Biotechnol. 22, 1409 (2004).
Terry Spencer, L., Humphries, J. & Brantly, M. Antibody response to aerosolized transgenic human alpha 1 -antitrypsin. N. Engl. J. Med. 352, 2030–1 (2005).
Niklas, J. et al. Primary metabolism in the new human cell line AGE1.HN at various substrate levels: Increased metabolic efficiency and α1-antitrypsin production at reduced pyruvate load. Appl. Microbiol. Biotechnol. 93(4), 1637–50 (2012).
Niklas, J. et al. Metabolism and metabolic burden by α1-antitrypsin production in human AGE1.HN cells. Metabol. Eng. 16, 103–114 (2013).
Chin, C. L. et al. Engineering selection stringency on expression vector for the production of recombinant human alpha1-antitrypsin using Chinese Hamster ovary cells. BMC Biotechnol. 15, 44–44 (2015).
Lalonde, M.-E. et al. Production of α2,6-sialylated and non-fucosylated recombinant alpha-1-antitrypsin in CHO cells. J. Biotechnol. 307, 87–97 (2020).
Monteil, D. T. et al. A comparison of orbitally-shaken and stirred-tank bioreactors: pH modulation and bioreactor type affect CHO cell growth and protein glycosylation. Biotechnol. Prog. 32(5), 1174–1180 (2016).
Coronel, J. et al. Influenza A virus production in a single-use orbital shaken bioreactor with ATF or TFF perfusion systems. Vaccine 37(47), 7011–7018 (2019).
Bürgin, T. et al. Orbitally shaken single-use bioreactor for animal cell cultivation: fed-batch and perfusion mode. In Animal Cell Biotechnology: Methods and Protocols 105–123 (New York, NY, Springer, US, 2019).
Blessing, D. et al. Scalable production of AAV vectors in orbitally shaken HEK293 cells. Mol. Ther. Methods Clin. Dev. 13, 14–26 (2019).
David (Xiaojian) Zhao, B.N., Mark Stramaglia, Richard Fike. Improving Protein Production in CHO cells. 2008 (2008).
Grilo, A. L. & Mantalaris, A. The increasingly human and profitable monoclonal antibody market. Trends Biotechnol. 37(1), 9–16 (2019).
López-Meza, J. et al. Using simple models to describe the kinetics of growth, glucose consumption, and monoclonal antibody formation in naive and infliximab producer CHO cells. Cytotechnology 68(4), 1287–1300 (2016).
Dumont, J. et al. Human cell lines for biopharmaceutical manufacturing: History, status, and future perspectives. Crit. Rev. Biotechnol. 36(6), 1110–1122 (2016).
Hansen, H. G. et al. Case study on human α1-antitrypsin: Recombinant protein titers obtained by commercial ELISA kits are inaccurate. Biotechnol. J. 11(12), 1648–1656 (2016).
Johnson, D. A. & Travis, J. Human alpha-1-proteinase inhibitor mechanism of action: Evidence for activation by limited proteolysis. Biochem. Biophys. Res. Commun. 72(1), 33–39 (1976).
Bi, X. et al. Proteomic profiling of barley spent grains guides enzymatic solubilization of the remaining proteins. Appl. Microbiol. Biotechnol. 102(9), 4159–4170 (2018).
Hogwood, C. E. M., Bracewell, D. G. & Smales, C. M. Host cell protein dynamics in recombinant CHO cells. Bioengineered 4(5), 288–291 (2013).
Koyuturk, I. et al. High-level production of wild-type and oxidation-resistant recombinant alpha-1-antitrypsin in glycoengineered CHO cells. Biotechnol. Bioeng. 119, 2331–2344 (2022).
Viglio, S. et al. Methods of purification and application procedures of alpha1 antitrypsin: A long-lasting history. Molecules 25, 4014 (2020).
Li, F., et al. Current Therapeutic Antibody Production and Process Optimization. 5. (2007).
Glaser, C. B., Karic, L. & Cohen, A. B. Low pH stability of alpha-1-antitrypsin. Biochimica et Biophysica Acta BBA Protein Struct. 491(1), 325–330 (1977).
Huangfu, C. et al. Large-scale purification of high purity α1-antitrypsin from Cohn Fraction IV with virus inactivation by solvent/detergent and dry-heat treatment. Biotechnol. Appl. Biochem. 65(3), 446–454 (2018).
McNulty, M. J. et al. Alpha-1 antitrypsin deficiency and recombinant protein sources with focus on plant sources: Updates, challenges and perspectives. Free Radical Biol. Med. 163, 10–30 (2021).
Jinyan, Q. et al. The effect of hyperosmolality application time on production, quality, and biopotency of monoclonal antibodies produced in CHO cell fed-batch and perfusion cultures. Appl. Microbiol. Biotechnol. 103, 1217–1229 (2018).
Martínez, V. S. et al. Flux balance analysis of CHO cells before and after a metabolic switch from lactate production to consumption. Biotechnol. Bioeng. 110(2), 660–666 (2013).
Hiller, G. W. et al. Cell-controlled hybrid perfusion fed-batch CHO cell process provides significant productivity improvement over conventional fed-batch cultures. Biotechnol. Bioeng. 114(7), 1438–1447 (2017).
Mulukutla, B. C. et al. Identification and control of novel growth inhibitors in fed-batch cultures of Chinese hamster ovary cells. Biotechnol. Bioeng. 114(8), 1779–1790 (2017).
Xu, S. et al. Probing lactate metabolism variations in large-scale bioreactors. Biotechnol. Prog. 34(3), 756–766 (2018).
Yang, M. & Butler, M. Effects of ammonia on CHO cell growth, erythropoietin production, and glycosylation. Biotechnol. Bioeng. 68(4), 370–380 (2000).
Freund, N. W. & Croughan, M. S. A simple method to reduce both lactic acid and ammonium production in industrial animal cell culture. Int. J. Mol. Sci. 19(2), 385 (2018).
Klöckner, W. et al. Correlation between mass transfer coefficient kLa and relevant operating parameters in cylindrical disposable shaken bioreactors on a bench-to-pilot scale. J. Biol. Eng. 7(1), 28–28 (2013).
Pallister, E. G. et al. Exploiting the Disialyl Galactose Activity of α2,6-Sialyltransferase from Photobacterium damselae To Generate a Highly Sialylated Recombinant α-1-Antitrypsin. Biochemistry 59(34), 3123–3128 (2020).
Darja, O. et al. Responses of CHO cell lines to increased pCO2 at normal (37°C) and reduced (33°C) culture temperatures. J. Biotechnol. 219, 98–109 (2016).
Fox, S. R. et al. Maximizing interferon-γ production by chinese hamster ovary cells through temperature shift optimization: Experimental and modeling. Biotechnol. Bioeng. 85(2), 177–184 (2004).
Hogiri, T. et al. Optimization of a pH-shift control strategy for producing monoclonal antibodies in Chinese hamster ovary cell cultures using a pH-dependent dynamic model. J. Biosci. Bioeng. 125(2), 245–250 (2018).
Khattak, S. F. et al. Feed development for fed-batch CHO production process by semisteady state analysis. Biotechnol. Prog. 26(3), 797–804 (2010).
Li, F. et al. Cell culture processes for monoclonal antibody production. mAbs 2(5), 466–479 (2010).
