References
-
Bloom, D. E. & Cadarette, D. Infectious disease threats in the twenty-first century: strengthening the global response. Front. Immunol. 10, 549 (2019).
-
Mohammed, M., Devnarain, N., Elhassan, E. & Govender, T. Exploring the applications of hyaluronic acid-based nanoparticles for diagnosis and treatment of bacterial infections. Wiley Interdisciplinary Reviews: Nanomed. Nanobiotechnol. 14, e1799 (2022).
-
McArthur, D. B. Emerging infectious diseases. Nurs. Clin. 54, 297–311 (2019).
-
Vouga, M. & Greub, G. Emerging bacterial pathogens: the past and beyond. Clin. Microbiol. Infect. 22, 12–21 (2016).
-
Snetkov, P. et al. In-vitro antibacterial activity of curcumin-loaded nanofibers based on hyaluronic acid against multidrug-resistant ESKAPE pathogens. Pharmaceutics 14, 1186 (2022).
-
Lee, N. Y., Ko, W. C. & Hsueh, P. R. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front. Pharmacol. 10, 1153 (2019).
-
Canaparo, R. et al. Recent developments in antibacterial therapy: focus on stimuli-responsive drug-delivery systems and therapeutic nanoparticles. Molecules 24, 1991 (2019).
-
Osmokrovic, A. et al. Current state and advances in antimicrobial strategies for burn wound dressings: from metal-based antimicrobials and natural bioactive agents to future perspectives. Int. J. Mol. Sci. 26, 4381 (2025).
-
Vo, V. et al. Dermal substitutes for clinical management of severe burn injuries: current and future perspectives. Adv. Ther. 8, 2400455 (2025).
-
Khosravimelal, S., Chizari, M., Farhadihosseinabadi, B., Moosazadeh Moghaddam, M. & Gholipourmalekabadi, M. Fabrication and characterization of an antibacterial chitosan/silk fibroin electrospun nanofiber loaded with a cationic peptide for wound-dressing application.
-
Garcia, C. E. G., Martínez, F. A. S., Bossard, F. & Rinaudo, M. Production of chitosan/hyaluronan complex nanofibers. Characterization and physical properties as a function of the composition. Polymers 12 (2020).
-
Rajeshkumar, S. et al. Synthesis of greener silver nanoparticle-based Chitosan nanocomposites and their potential antimicrobial activity against oral pathogens. 10, 658–665 (2021).
-
Lin, Z. et al. Biofunctions of antimicrobial peptide-conjugated alginate/hyaluronic acid/collagen wound dressings promote wound healing of a mixed-bacteria-infected wound. Int. J. Biol. Macromol. 140, 330–342 (2019).
-
Karthik, V., Arivarasu, L. & Rajeshkumar, S. Hyaluronic acid mediated zinc nanoparticles against oral pathogens and its cytotoxic potential. J. Pharm. Res. Int. 32, 113–117 (2020).
-
Liang, Z. & Chen, D. Targeting therapy effects of composite hyaluronic acid/chitosan nanosystems containing inclusion complexes. Drug Deliv. 29, 2734–2741 (2022).
-
Chen, C. H., Cheng, Y. H., Chen, S. H., Chuang, A. D. C. & Chen, J. P. Functional hyaluronic acid-polylactic acid/silver nanoparticles core-sheath nanofiber membranes for prevention of post-operative tendon adhesion. Int. J. Mol. Sci. 22, 8781 (2021).
-
Lee, H., Park, H., Noh, G. J. & Lee, E. S. pH-responsive hyaluronate-anchored extracellular vesicles to promote tumor-targeted drug delivery. Carbohydr. Polym. 202, 323–333 (2018).
-
Talebi, M., Ghale, R. A., Asl, R. M. & Tabandeh, F. Advancements in characterization and preclinical applications of hyaluronic acid-based biomaterials for wound healing: a review. Carbohydrate Polym. Technol. Applications, 100706 (2025).
-
Saadati, F. et al. Advances and principles of hyaluronic acid production, extraction, purification, and its applications: A review. International J. Biol. Macromolecules, 143839 (2025).
-
Nikuiyan, Z. et al. Reconstruction of a genome-scale metabolic model for Streptococcus zooepidemicus: comparison with Corynebacterium glutamicum to study hyaluronic acid production. PLoS One. 20, e0335509 (2025).
-
Chang, R. et al. Nanocomposite multifunctional hyaluronic acid hydrogel with photothermal antibacterial and antioxidant properties for infected wound healing. Int. J. Biol. Macromol. 226, 870–884 (2023).
-
Zamboni, F., Wong, C. K. & Collins, M. N. Hyaluronic acid association with bacterial, fungal and viral infections: can hyaluronic acid be used as an antimicrobial polymer for biomedical and pharmaceutical applications? Bioactive Mater. 19, 458–473 (2023).
-
Westbrook, A. W., Ren, X., Moo-Young, M. & Chou, C. P. Application of hydrocarbon and perfluorocarbon oxygen vectors to enhance heterologous production of hyaluronic acid in engineered Bacillus subtilis. Biotechnol. Bioeng. 115, 1239–1252 (2018).
-
Ijaz, M. et al. Dissecting Streptococcus pyogenes interaction with human. Arch. Microbiol. 202, 2023–2032 (2020).
-
Liu, Y. et al. Springer,. in Advances in Applied Biotechnology 439–452 (2015).
-
Garlapati, V. K. Comprehensive review on biotechnological production of hyaluronic acid status, Innovation, Market and Applications. (2022).
-
Hoffmann, J. & Altenbuchner, J. Hyaluronic acid production with Corynebacterium glutamicum: effect of media composition on yield and molecular weight. J. Appl. Microbiol. 117, 663–678 (2014).
-
Cheng, F., Luozhong, S., Guo, Z., Yu, H. & Stephanopoulos, G. Enhanced biosynthesis of hyaluronic acid using engineered Corynebacterium glutamicum via metabolic pathway regulation. Biotechnol. J. 12, 1700191 (2017).
-
Tabasi, A. et al. Improved production of food-grade hyaluronic acid in Recombinant Corynebacterium glutamicum by medium optimization and feeding strategy. Applied Food Biotechnology 12, 1–14 .
-
Michalska-Sionkowska, M., Kaczmarek, B., Walczak, M. & Sionkowska, A. Antimicrobial activity of new materials based on the blends of collagen/chitosan/hyaluronic acid with gentamicin sulfate addition. Mater. Sci. Engineering: C. 86, 103–108 (2018).
-
Oryan, A. & Sahvieh, S. Effectiveness of Chitosan scaffold in skin, bone and cartilage healing. Int. J. Biol. Macromol. 104, 1003–1011 (2017).
-
Michalska-Sionkowska, M., Walczak, M. & Sionkowska, A. Antimicrobial activity of collagen material with thymol addition for potential application as wound dressing. Polym. Test. 63, 360–366 (2017).
-
Hosny, S. et al. A comprehensive review of silver nanoparticles (AgNPs): synthesis strategies, toxicity concerns, biomedical applications, ai-driven advancements, challenges, and future perspectives. Arabian J. Sci. Engineering, 1–48 (2025).
-
Duman, H. et al. Silver nanoparticles: A comprehensive review of synthesis methods and chemical and physical properties. Nanomaterials 14, 1527 (2024).
-
Del Olmo, J. A. et al. Hyaluronic acid-based hydrogel coatings on Ti6Al4V implantable biomaterial with multifunctional antibacterial activity. Carbohydr. Polym. 301, 120366 (2023).
-
Villamizar-Sarmiento, M. G. et al. Ionic nanocomplexes of hyaluronic acid and polyarginine to form solid materials: A green methodology to obtain sponges with biomedical potential. Nanomaterials 9, 944 (2019).
-
Abdel-Mohsen, A. et al. Electrospinning of hyaluronan/polyvinyl alcohol in presence of in-situ silver nanoparticles: Preparation and characterization. Int. J. Biol. Macromol. 139, 730–739 (2019).
-
Karami, M. et al. Preparation, purification, and characterization of low-molecular-weight hyaluronic acid. Biotechnol. Lett. 43, 133–142 (2021).
-
Miguel, S. P. et al. An overview of electrospun membranes loaded with bioactive molecules for improving the wound healing process. Eur. J. Pharm. Biopharm. 139, 1–22 (2019).
-
Bitter, T. A modified uronic acid carbazole reaction. Anal. Biochem. 4, 330–334 (1962).
-
Cesaretti, M., Luppi, E., Maccari, F. & Volpi, N. A 96-well assay for uronic acid carbazole reaction. Carbohydr. Polym. 54, 59–61 (2003).
-
Song, J. M., Im, J. H., Kang, J. H. & Kang D.-J. A simple method for hyaluronic acid quantification in culture broth. Carbohydr. Polym. 78, 633–634 (2009).
-
Bouin, A. S. & Wierer, M. Quality standards of the European pharmacopoeia. J. Ethnopharmacol. 158, 454–457 (2014).
-
Li, C. et al. Silver nanoparticle/chitosan oligosaccharide/poly (vinyl alcohol) nanofibers as wound dressings: a preclinical study. International J. Nanomedicine, 4131–4145 (2013).
-
Kanimozhi, K., Basha, S. K., Kumari, V. S., Kaviyarasu, K. & Maaza, M. In vitro cytocompatibility of chitosan/PVA/methylcellulose–Nanocellulose nanocomposites scaffolds using L929 fibroblast cells. Appl. Surf. Sci. 449, 574–583 (2018).
-
Um, I. C., Fang, D., Hsiao, B. S., Okamoto, A. & Chu, B. Electro-spinning and electro-blowing of hyaluronic acid. Biomacromolecules 5, 1428–1436 (2004).
-
Ward, P. D., Thibeault, S. L. & Gray, S. D. Hyaluronic acid: its role in voice. J. Voice. 16, 303–309 (2002).
-
Boldock, E. et al. Human skin commensals augment Staphylococcus aureus pathogenesis. Nat. Microbiol. 3, 881–890 (2018).
-
Giovane, R., Pernia, L., Faught, W., Cumagen, P. & Comer, J. M. Polymicrobial wound infection caused by Lelliottia amnigena, Staphylococcus aureus, and Corynebacterium following a lawnmower accident. Cureus 17 (2025).
-
Villanueva, D. M. et al. Escherichia coli ST1193 O75 H5: A rare cause of native valve endocarditis with multifocal emboli to brain and spleen. IDCases 37, e02052 (2024).
-
Azam, A. et al. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. International J. Nanomedicine, 6003–6009 (2012).
-
Fazal, A., Ara, S., Ishaq, M. T. & Sughra, K. Green fabrication of copper oxide nanoparticles: a comparative antibacterial study against gram-positive and gram-negative bacteria. Arab. J. Sci. Eng. 47, 523–533 (2022).
-
Alavi, M. & Varma, R. S. Antibacterial and wound healing activities of silver nanoparticles embedded in cellulose compared to other polysaccharides and protein polymers. Cellulose 28, 8295–8311 (2021).
-
Bernardo, M. P., Pasquini, D. & Mattoso, L. H. Enhanced antibacterial activity of wound dressings based on alginate/hydroxyapatite modified with copper and Naproxen. J. Mater. Res. 39, 762–773 (2024).
-
Slavin, Y. N., Asnis, J., Hńfeli, U. O. & Bach, H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 15, 1–20 (2017).
-
Pelgrift, R. Y. & Friedman, A. J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev. 65, 1803–1815 (2013).
