Enhancement of yield and fruit quality of strawberry under deficit fertigation via sodium hydrosulfide and L-cysteine

enhancement-of-yield-and-fruit-quality-of-strawberry-under-deficit-fertigation-via-sodium-hydrosulfide-and-l-cysteine
Enhancement of yield and fruit quality of strawberry under deficit fertigation via sodium hydrosulfide and L-cysteine

References

  1. Manda-Hakki, K. & Hassanpour, H. Postharvest L-phenylalanine application on shelf life and physicochemical characteristics of Sabrina strawberry during cold storage. J. Hortic. Sci. 38 (3), 611–625. https://doi.org/10.22067/jhs.2024.87437.1334 (2024).

    Google Scholar 

  2. Manda-Hakki, K. & Hassanpour, H. The effect of L-glutathione postharvest treatment on the physicochemical characteristics of Sabrina strawberry fruit during cold storage. Iran. Food Sci. Technol. Res. J. 21 (1), 119–132. https://doi.org/10.22067/ifstrj.2024.90319.1375 (2025).

    Google Scholar 

  3. Morgan, R. P. C. Soil Erosion and Conservation (3rd ed.). Blackwell Publishing. (2009). https://doi.org/10.1111/j.1365-2389.2005.0756f.x

  4. Sharma, S. P., Leskovar, D. I., Crosby, K. M., Volder, A. & Ibrahim, A. M. H. Root growth, yield, and fruit quality responses of reticulatus and Inodorus Melons (Cucumis Melo L.) to deficit subsurface drip irrigation. Agric. Water Manage. 136, 75–85. https://doi.org/10.1016/j.agwat.2014.01.008 (2014).

    Google Scholar 

  5. Dehghanipoodeh, S., Ghobadi, C., Baninasab, B., Gheysari, M. & Shiranibidabadi, S. Effect of silicon on growth and development of strawberry under water deficit conditions. Hortic. Plant. J. 4 (6), 226–232. https://doi.org/10.1016/j.hpj.2018.09.004 (2018).

    Google Scholar 

  6. Yang, B. et al. Regulated deficit irrigation: an effective way to solve the shortage of agricultural water for horticulture. Stress Biol. 2 (1), 28. https://doi.org/10.1007/s44154-022-00050-5 (2022).

    Google Scholar 

  7. Chen, J. et al. Hydrogen sulfide-mediated polyamines and sugar changes are involved in hydrogen sulfide-induced drought tolerance in Spinacia Oleracea seedlings. Front. Plant. Sci. 7, 1173. https://doi.org/10.3389/fpls.2016.01173 (2016).

    Google Scholar 

  8. Muradoglu, F. et al. M. Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry. Biol. Res. 48, 11. https://doi.org/10.1186/s40659-015-0001-3 (2015).

    Google Scholar 

  9. Gundogdu, M. et al. Influence of foliar application with gibberellic acid on phenolic and bioactive compounds of strawberry fruits. Erwerbs-Obstbau 63, 15–23. https://doi.org/10.1007/s10341-021-00543-z (2021).

    Google Scholar 

  10. Oloumi, H., Maleki, M., Habibipour, L. & Lotfi, S. Foliar application of NaHS alleviates cd toxicity in soybean plants through regulation of glutathione metabolism. Plant. Stress. 11, 100363. https://doi.org/10.1016/j.stress.2024.100363 (2024).

    Google Scholar 

  11. Kaya, C. Melatonin and hydrogen sulfide signaling synergistically enhance iron bioavailability and stress resilience in strawberry under iron deficiency. Food Energy Secur. 14 (2), e70084. https://doi.org/10.1002/fes3.70084 (2025).

    Google Scholar 

  12. Álvarez, C., Bermúdez, M. Á., Romero, L. C., Gotor, C. & García, I. Cysteine homeostasis plays an essential role in plant immunity. New. Phytol. 193, 165–177. https://doi.org/10.1111/j.1469 (2012).

    Google Scholar 

  13. Khani, A., Barzegar, T., Nikbakht, J. & Sabatino, L. Foliar application of K-silicate and L-cysteine enhances production, quality, and antioxidant activities of cape gooseberry fruits under drought conditions. Agronomy 15 (3), 675. https://doi.org/10.3390/agronomy15030675 (2025).

    Google Scholar 

  14. AminiKhoshalani, K., Hassanpour, H. & Manda-Hakki, K. Changes in postharvest quality and antioxidant characteristics of Dargazi Pear fruit influenced by L-cysteine. Appl. Food Res. 5 (2), 101293. https://doi.org/10.1016/j.afres.2025.101293 (2025).

    Google Scholar 

  15. AmiriBahmanbiglo, F. & Eshghi, S. Improving the growth, yield and iron concentration of strawberry using sodium hydrosulfide (NaHS) under soilless culture. J. Plant. Nutr. 47 (5), 786–796. https://doi.org/10.1080/01904167.2023.2281518 (2024).

    Google Scholar 

  16. Kondo, T. Effects of sodium hydrosulfide, a hydrogen sulfide donor, application on vegetative growth in passion fruit under chilling stress. Trop. Agric. Dev. 65 (1), 54–57. https://doi.org/10.11248/jtad.65.54 (2021).

    Google Scholar 

  17. Shalaby, O. A. E. S., Farag, R. & Ibrahim, M. F. Effect of hydrogen sulfide and hydrogen peroxide on growth, yield and nutrient content of broccoli plants grown under saline conditions. Sci. Hortic. 316, 112035. https://doi.org/10.1016/j.scienta.2023.112035 (2023).

    Google Scholar 

  18. Capaldi, F. R., Gratão, P. L., Reis, A. R., Lima, L. W. & Azevedo, R. A. Sulfur metabolism and stress defense responses in plants. Trop. Plant. Biol. 8 (3), 60–73. https://doi.org/10.1007/s12042-015-9152-1 (2015).

    Google Scholar 

  19. Takahashi, H., Marsolais, F., Cuypers, A. & Kopriva, S. Sulfur metabolism: actions for plant resilience and environmental adaptation. J. Exp. Bot. 74 (11), 3271–3275. https://doi.org/10.1093/jxb/erad164 (2023).

    Google Scholar 

  20. Haghighi, M., Nikbakht, A. & Pessarakli, M. Effects of humic acid on remediation of the nutritional deficiency of Gerbera in hydroponic culture. J. Plant. Nutr. 39 (5), 702–713. https://doi.org/10.1080/01904167.2015.1087560 (2016).

    Google Scholar 

  21. Singh, M. C., Singh, K. G., Singh, J. P. & Mahal, A. K. Performance of soilless cucumbers in relation to differential fertigation under naturally ventilated greenhouse conditions. J. Plant. Nutr. 42 (11–12), 1316–1332. https://doi.org/10.1080/01904167.2019.1609507 (2019).

    Google Scholar 

  22. Sarabi, B. Effect of nutrient solution concentrations and irrigation levels combined with humic acid on physiological and quality characteristics of rocket crop (Eruca sativa (mill.) thell). Arid Land. Res. Manage. 38 (2), 201–225. https://doi.org/10.1080/15324982.2023.2284361 (2024).

    Google Scholar 

  23. Lynette, M. Hydroponic Strawberry Production: A Technical Guide To the Hydroponic Production of Strawberries 1st edn (Suntec (NZ) Ltd, 2006).

  24. Caruso, G., Villari, G., Melchionna, G. & Conti, S. Effects of cultural cycles and nutrient solutions on plant growth, yield and fruit quality of alpine strawberry (Fragaria Vesca L.) grown in hydroponics. Sci. Hortic. 129 (3), 479–485. https://doi.org/10.1016/j.scienta.2011.04.034 (2011).

    Google Scholar 

  25. Manda-Hakki, K. & Hassanpour, H. Changes in postharvest quality and physiological attributes of strawberry fruits influenced by L-phenylalanine. Food Sci. Nutr. 12 (10), 1–13. https://doi.org/10.1002/fsn3.4564 (2024b).

    Google Scholar 

  26. Giusti, M. M. & Wrolstad, R. E. Characterization and measurement of anthocyanins by UV-visible spectroscopy. Curr. Protoc. Food Anal. Chem. 47, 777–780. https://doi.org/10.1002/0471142913.faf0102s00 (2001).

    Google Scholar 

  27. Shin, S. W., Ghimeray, A. K. & Park, C. H. Investigation of total phenolic, total flavonoid, antioxidant and allyl isothiocyanate content in different organs of Wasabi Japonica grown in an organic system. Afr. J. Tradit Complement. Altern. Med. 3 (11), 38–45. https://doi.org/10.4314/ajtcam.v11i3.7 (2014).

    Google Scholar 

  28. Cunha, D., Godwin, B., Satyanarayan, V. & Nair, P. M. Purification of phenylalanine ammonia-lyase from Rhodotorula glutinis. Phytochem 42, 17–20. https://doi.org/10.1016/0031-9422(95)00793-2 (1996).

    Google Scholar 

  29. Aebi, H. Catalase in vitro. Methods Enzymol. 105, 121–126. https://doi.org/10.1016/S0076-6879(84)05016-3 (1984).

    Google Scholar 

  30. Nakano, Y. & Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant. Cell. Physiol. 22 (5), 867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232 (1981).

    Google Scholar 

  31. Galindo, A. et al. Pérez López, D. Deficit irrigation and emerging fruit crops as a strategy to save water in mediterranean semiarid agrosystems. Agric. Water Manage. 202, 311–324. https://doi.org/10.1016/j.agwat.2018.02.024 (2018).

    Google Scholar 

  32. AminiKhoshalani, K., Hassanpour, H. & Manda-Hakki, K. The effect of different concentrations of phenylalanine on some physiological and biochemical characteristics of Dargazy Pears during the storage period. Iran. J. Hort Sci. https://doi.org/10.22059/ijhs.2025.384005.2220 (2025). In press.

    Google Scholar 

  33. Kumarihami, H. M. P. C. et al. Preharvest application of Chitosan improves the postharvest life of ‘Garmrok’ Kiwifruit through modulation of genes related to ethylene biosynthesis, cell wall modification and lignin metabolism. Foods 10 (2), 373. https://doi.org/10.3390/foods10020373 (2021).

    Google Scholar 

  34. Thakur, M. & Anand, A. Hydrogen sulfide: an emerging signaling molecule regulating drought stress response in plants. Physiol. Plant. 172 (2), 1227–1243. https://doi.org/10.1111/ppl.13432 (2021).

    Google Scholar 

  35. Pace, B., Capotorto, I., Ventura, M. & Cefola, M. Evaluation of L-cysteine as anti-browning agent in fresh-cut lettuce processing. J Food Process. Preserv. 39 (6), 985–993. https://doi.org/10.1111/jfpp.12312 (2015).

    Google Scholar 

  36. Perkins-Veazie, P. Blueberry fruit response to postharvest application of ultraviolet radiation. Postharvest Biol. Technol. 10, 1005–1016. https://doi.org/10.1016/j.postharvbio.2007.08.002 (2007).

    Google Scholar 

  37. Shalaby, O. A. Iodine application induces the antioxidant defense system, alleviates salt stress, reduces nitrate content, and increases the nutritional value of lettuce plants. Funct. Plant. Biol. 52 (6). https://doi.org/10.1071/FP24273 (2025).

  38. Xu, D. Y. et al. Effect of folic acid on the postharvest physiology of broccoli during storage. Food Chem. 339, 127981. https://doi.org/10.1016/j.foodchem.2020.12798 (2021).

    Google Scholar 

  39. Ahmadkhani, S., Soleimani, A., Razavi, F. & Kheiry, A. Hydrogen sulfide postharvest application impacts on physicochemical attributes of Cornus Mas fruits during cold storage. Food Sci. Nutr. 22 (4), 425–436. https://doi.org/10.1002/fsn3.2501 (2021).

    Google Scholar 

  40. Zhou, M., Xie, Y., Van Breusegem, F. & Huang, J. Hydrogen sulfide and protein persulfidation in plant stress signaling. J. Exp. Bot. eraf100. https://doi.org/10.1093/jxb/eraf100 (2025).

  41. Shen, X., Liu, Y., Zeng, Y., Zhao, Y., Bao, Y., Wu, Z. … Jin, P. Hydrogen sulfide alleviates the chilling-induced lignification in loquat fruit by regulating shikimate,phenylpropanoid and cell wall metabolisms. Postharvest Biol. Technol.214, 113012. https://doi.org/10.1016/j.postharvbio.2024.113012 (2024).

  42. Ge, A. et al. Effects of glutathione on the ripening quality of strawberry fruits. AIP Conference Proceedings 020013. (2079). https://doi.org/10.1063/1.5097292 (2019).

  43. Li, H. et al. Effects of drying methods on drying characteristics, physicochemical properties and antioxidant capacity of Okra. LWT – Food Sci. Technol. 101 https://doi.org/10.1016/j.lwt.2018.11.068 (2018).

  44. Saedi, F., Barzegar, T., Ghahremani, Z., Nikbakht, J. & Nasiri, J. Mitigation of drought stress in three squirting cucumber ecotypes through foliar application of different seaweed extract mixtures as a biostimulant. Sci. Hortic. 353, 114461. https://doi.org/10.1016/j.scienta.2025.114461 (2025).

    Google Scholar 

  45. Nath, P., Bouzayen, M., Mattoo, A. K. & Pech, J. C. Fruit Ripening: physiology, Signaling and Genomics (CABI, 2014).

  46. Hassanpour, H. & Alizadeh, S. Evaluation of phenolic compounds, antioxidant activities and antioxidant enzymes of barberry genotypes in Iran. Sci. Hortic. 200, 125–130. https://doi.org/10.1016/j.scienta.2016.01.046 (2016).

    Google Scholar 

  47. Manda-Hakki, K. & Hassanpour, H. Effect of L-glutathione treatment on biochemical properties, antioxidant capacity and antioxidant enzymes activity in strawberry fruits during storage. Heliyon 10 (18), e38046. https://doi.org/10.1016/j.heliyon.2024.e38046 (2024c).

    Google Scholar 

  48. Hasanuzzaman, M. et al. K. The role of sulfur in plant abiotic stress tolerance: molecular interactions and defense mechanisms. In Plant Nutrients and Abiotic Stress Tolerance (pp. 221–252). Springer Singapore. (2018). https://doi.org/10.1007/978-981-10-5756-0_10

Download references