Antibacterial potential of endophytic Streptomyces spp. isolated from peanut (Arachis hypogaea) roots: bioactiveprofiling and molecular docking studies

antibacterial-potential-of-endophytic-streptomyces-spp.-isolated-from-peanut-(arachis-hypogaea)-roots:-bioactiveprofiling-and-molecular-docking-studies
Antibacterial potential of endophytic Streptomyces spp. isolated from peanut (Arachis hypogaea) roots: bioactiveprofiling and molecular docking studies

References

  1. Uddina, T. et al. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J. Infect. Public Health, 14(12) 1750–1766. https://doi.org/10.1016/j.jiph.2021.10.020

  2. Ahmed, S. et al. Antimicrobial resistance: Impacts, challenges, and future prospects. J. Med. Surg. Public. Health. 2 https://doi.org/10.1016/j.glmedi.2024.100081 (2024).

  3. Zhu, Y., Huang, W. E. & Yang, Q. Clinical perspective of antimicrobial resistance in bacteria. Infect. Drug Resist. 15, 735–746 (2022).

    Google Scholar 

  4. Nwobodo, D. C. et al. Antibiotic resistance: the challenges and some emerging strategies for tackling a global menace. J. Clin. Lab. Anal. 36, e24655 (2022).

    Google Scholar 

  5. Patel, J. K., Madaan, S. & Archana, G. Antibiotic producing endophytic Streptomyces spp. Colonize above-ground plant parts and promote shoot growth in multiple healthy and pathogen-challenged cereal crops. Microbiol. Res. 215, 36–45 (2018).

    Google Scholar 

  6. Santoyo, G., Moreno-Hagelsieb, G., Orozco-Mosqueda, M. C. & Glick, B. R. Plant growth-promoting bacterial endophytes. Microbiol. Res. 183, 92–99 (2016).

    Google Scholar 

  7. Hardoim, P. R., van Overbeek, L. S. & van Elsas, J. D. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 16, 463–471 (2008).

    Google Scholar 

  8. Veilumuthu, P. et al. Genomic insights into an endophytic streptomyces sp. VITGV156 for antimicrobial compounds. Front Microbiol 15, 1-19 (2024).

  9. Yadav, R. P. et al. Antibacterial, Antifungal, and cytotoxic effects of endophytic streptomyces species isolated from the Himalayan regions of Nepal and their metabolite study. Biomedicines 12, 2192 (2024).

    Google Scholar 

  10. Gouda, S., Das, G., Sen, S. K., Shin, H. S. & Patra, J. K. Endophytes: A treasure house of bioactive compounds of medicinal importance. Front. Microbiol. 7, 1538 (2016).

    Google Scholar 

  11. Singh, R. & Dubey, A. K. Diversity and applications of endophytic actinobacteria of plants in special and other ecological niches. Frontiers Microbiology 9, 1-30 (2018).

  12. Alam, K. et al. Streptomyces: the biofactory of secondary metabolites. Front. Microbiol. 13, 968053 (2022).

    Google Scholar 

  13. Islam, M. M., Saha, S., Sahoo, P. & Mandal, S. Endophytic streptomyces sp. MSARE05 isolated from roots of peanut plant produces a novel antimicrobial compound. J. Appl. Microbiol. 135, lxae051 (2024).

    Google Scholar 

  14. Coombs, J. T. & Franco, C. M. M. Isolation and identification of actinobacteria from Surface-Sterilized wheat roots. Appl. Environ. Microbiol. 69, 5603 (2003).

    Google Scholar 

  15. Filip, P., Weber, R. W. S., Sterner, O. & Anke, T. Hormonemate, a new cytotoxic and apoptosis-inducing compound from the endophytic fungus Hormonema dematioides. I. Identification of the producing strain, and isolation and biological properties of hormonemate. Z. Naturforsch C J. Biosci. 58, 547–552 (2003).

    Google Scholar 

  16. Eevers, N. et al. Optimization of isolation and cultivation of bacterial endophytes through addition of plant extract to nutrient media. Microb. Biotechnol. 8, 707–715 (2015).

    Google Scholar 

  17. Weyens, N. et al. Potential of Willow and its genetically engineered associated bacteria to remediate mixed cd and toluene contamination. J. Soils Sediments. 13, 176–188 (2013).

    Google Scholar 

  18. Abd-Elnaby, H., Abo-Elala, G., Abdel-Raouf, U., Abd-elwahab, A. & Hamed, M. Antibacterial and anticancer activity of marine Streptomyces parvus: optimization and application. Biotechnol. Biotechnol. Equip. 30, 180–191 (2016).

    Google Scholar 

  19. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997).

    Google Scholar 

  20. Felsenstein, J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376 (1981).

    Google Scholar 

  21. Posada, D. & Crandall, K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817–818 (1998).

    Google Scholar 

  22. Perrière, G. & Gouy, M. WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78, 364–369 (1996).

    Google Scholar 

  23. Chen, H. et al. Antimicrobial activity of secondary metabolites from streptomyces sp. K15, an endophyte in houttuynia cordata thunb. Nat. Prod. Res. 29, 2223–2225 (2015).

    Google Scholar 

  24. Jejurikar, B. L. & Rohane, S. H. Drug designing in discovery studio. Asian J. Res. Chem. 14, 135–138 (2021).

    Google Scholar 

  25. Vilar, S., Cozza, G. & Moro, S. Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular Docking to drug discovery. Curr. Top. Med. Chem. 8, 1555–1572 (2008).

    Google Scholar 

  26. Van Der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005).

    Google Scholar 

  27. Dorival, J. et al. Insights into a dual function amide oxidase/macrocyclase from Lankacidin biosynthesis. Nat. Commun. 9, 3998 (2018).

    Google Scholar 

  28. Schuwirth, B. S. et al. Structures of the bacterial ribosome at 3.5 A resolution. Science 310, 827–834 (2005).

    Google Scholar 

  29. Stratigopoulos, G. Regulation of Tylosin Production in Streptomyces Fradiae (University of Leicester, 2002).

  30. Mosbacher, T. G., Bechthold, A. & Schulz, G. E. Crystal structure of the avilamycin resistance-conferring methyltransferase AviRa from streptomyces viridochromogenes. J. Mol. Biol. 329, 147–157 (2003).

    Google Scholar 

  31. Fahim, A. M. Exploring novel benzene sulfonamide derivatives: Synthesis, ADME studies, anti-proliferative activity, Docking simulation, and emphasizing theoretical investigations. J. Indian Chem. Soc. 101, 101211 (2024).

    Google Scholar 

  32. Fahim, A. M., Abdelhamid, S. A. & Hameed, T. A. Antimicrobial, antioxidant activities and ADME studies of novel BaSnO3 Sulphone cellulose with Docking simulation. J. Mol. Struct. 1325, 140945 (2025).

    Google Scholar 

  33. Tolan, H. E. M., Abdelhamid, S. A. & Fahim, A. M. Exploring novel bromo heterocyclic scaffold and theoretical explanation of their biological actions. J. Mol. Struct. 1318, 139225 (2024).

    Google Scholar 

  34. Elsayed, G. H. & Fahim, A. M. Studying the impact of Chitosan salicylaldehyde/schiff base/CuFe2O4 in PC3 cells via theoretical studies and Inhibition of PI3K/AKT/mTOR signalling. Sci. Rep. 15, 4129 (2025).

    Google Scholar 

  35. Tolan, H. E. M., Ismael, E. H. I., Awad, H. M. & Fahim, A. M. New mercaptopyrimidine derivatives synthesized with expected antimicrobial and antioxidant properties and theoretical study. J. Mol. Struct. 1324, 140795 (2025).

    Google Scholar 

  36. Ali, A. R. et al. Isolation and identification of endophytic actinobacteria from citrullus colocynthis (L.) Schrad and their antibacterial properties. Microb. Cell. Fact. 21, 1–17 (2022).

    Google Scholar 

  37. Devi, S., Sharma, M. & Manhas, R. K. Investigating the plant growth promoting and biocontrol potentiality of endophytic streptomyces SP. SP5 against early blight in solanum lycopersicum seedlings. BMC Microbiol. 22, 285 (2022).

    Google Scholar 

  38. Kanini, G. S., Katsifas, E. A., Savvides, A. L. & Karagouni, A. D. Streptomyces rochei ACTA1551, an Indigenous Greek Isolate Studied as a Potential Biocontrol Agent against Fusarium oxysporum f.sp. lycopersici. BioMed Res Int. 2013,387230 (2013).

  39. Pazhanimurugan, R., Radhakrishnan, M., Shanmugasundaram, T., Gopikrishnan, V. & Balagurunathan, R. Terpenoid bioactive compound from streptomyces rochei (M32): taxonomy, fermentation and biological activities. World J. Microbiol. Biotechnol. 32, 161 (2016).

    Google Scholar 

  40. Al-Ansari, M., Alkubaisi, N., Vijayaragavan, P. & Murugan, K. Antimicrobial potential of streptomyces sp. to the gram positive and gram negative pathogens. J. Infect. Public. Health. 12, 861–866 (2019).

    Google Scholar 

  41. Malash, M., El-Naggar, M. & Ibrahim, M. Antimicrobial activities of a novel marine streptomyces sp. MMM2 isolated from El-Arish coast, Egypt. Egypt. J. Aquat. Biology Fisherie. 26, 1317–1339 (2022).

    Google Scholar 

  42. El-Shamy, N. T. et al. DFT, ADMET and molecular Docking investigations for the antimicrobial activity of 6,6′-Diamino-1,1′,3,3′-tetramethyl-5,5′-(4-chlorobenzylidene)bis[pyrimidine-2,4(1H,3H)-dione]. Molecules 27, 620 (2022).

    Google Scholar 

  43. Sharma, V., Chitranshi, N. & Agarwal, A. K. Significance and Biological Importance of Pyrimidine in the Microbial World. Int. J. Med. Chem. 2014, 202784 (2014).

  44. Madasu, C., Gudem, S., Sistla, R. & Uppuluri, V. M. Synthesis and anti-inflammatory activity of some novel pyrimidine hybrids of myrrhanone A, a bicyclic triterpene of commiphora mukul gum resin. Monatsh Chem. 148, 2183–2193 (2017).

    Google Scholar 

  45. Ren, J., Wang, J., Karthikeyan, S., Liu, H. & Cai, J. Natural anti-phytopathogenic fungi compound phenol, 2, 4-bis (1, 1-dimethylethyl) from Pseudomonas fluorescens TL-1. Indian J. Biochem. Biophys. 56, 162–168 (2019).

    Google Scholar 

  46. Choi, S. J. et al. 2,4-Di-tert-butylphenol from sweet potato protects against oxidative stress in PC12 cells and in mice. J. Med. Food. 16, 977–983 (2013).

    Google Scholar 

  47. Rangel-Sánchez, G., Castro-Mercado, E. & García-Pineda, E. Avocado roots treated with Salicylic acid produce phenol-2,4-bis (1,1-dimethylethyl), a compound with antifungal activity. J. Plant. Physiol. 171, 189–198 (2014).

    Google Scholar 

  48. Karthick, P. & Mohanraju, R. Antimicrobial potential of epiphytic bacteria associated with seaweeds of little Andaman, India. Front. Microbiol. 9, 611 (2018).

    Google Scholar 

  49. Pawar, R. et al. Epiphytic marine pigmented bacteria: A prospective source of natural antioxidants. Braz J. Microbiol. 46, 29–39 (2015).

    Google Scholar 

  50. Soliman, M. O., Suleiman, W. B., Roushdy, M. M., Elbatrawy, E. N. & Gad, A. M. Characterization of some bacterial strains isolated from the Egyptian Eastern and Northern coastlines with antimicrobial activity of Bacillus zhangzhouensis OMER4. Acta Oceanol. Sin. 41, 86–93 (2022).

    Google Scholar 

  51. Viszwapriya, D., Prithika, U., Deebika, S., Balamurugan, K. & Pandian, S. K. In vitro and in vivo antibiofilm potential of 2,4-Di-tert-butylphenol from seaweed surface associated bacterium Bacillus subtilis against group A streptococcus. Microbiol. Res. 191, 19–31 (2016).

  52. Stamos, J., Sliwkowski, M. X. & Eigenbrot, C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem. 277, 46265–46272 (2002).

    Google Scholar 

  53. Beaudegnies, R., De Mesmaeker, A., Mallinger, A., Baalouch, M. & Goetz, A. Design and synthesis of novel Spirocyclopropyl cyclohexane-1,3-diones and – 1,3,5-triones for their incorporation into potent HPPD inhibitors. Tetrahedron Lett. 51, 2741–2744 (2010).

    Google Scholar 

  54. Xie, Y. Q. et al. Design, synthesis, and biological activity of oxime ether strobilurin derivatives containing Indole moiety as novel fungicide. Chem. Biol. Drug Des. 85, 743–755 (2015).

    Google Scholar 

  55. Peng, W. et al. Characteristics of antibacterial molecular activities in Poplar wood extractives. Saudi J. Biol. Sci. 24, 399–404 (2017).

    Google Scholar 

  56. Elleuch, L. et al. Bioactive secondary metabolites from a new terrestrial streptomyces sp. TN262. Appl. Biochem. Biotechnol. 162, 579–593 (2010).

    Google Scholar 

  57. Eleazu, C. O. Characterization of the natural products in Cocoyam (Colocasia esculenta) using GC-MS. Pharm. Biol. 54, 2880–2885 (2016).

    Google Scholar 

  58. Amrati, F. E. Z. et al. Caralluma Europaea (Guss.) N.E.Br.: Anti-Inflammatory, Antifungal, and antibacterial activities against nosocomial Antibiotic-Resistant microbes of chemically characterized fractions. Molecules 26, 636 (2021).

    Google Scholar 

  59. Ahmad, B., Khan, I., Bashir, S. & Azam, S. Chemical composition and antifungal, phytotoxic, Brine shrimp cytotoxicity, insecticidal and antibacterial activities of the essential oils of acacia Modesta. JMPR 6, 4653–4659 (2012).

    Google Scholar 

  60. Grover, N. & Patni, V. Phytochemical characterization using various solvent extracts and GC-MS analysis of methanolic extract of Woodfordia fruticosa (L.) Kurz. Leaves. Int. J. Pharm. Pharm. Sci. 5, 291–295 (2013).

    Google Scholar 

  61. Balasubramanian, S., Ramalingan, C., Aridoss, G. & Kabilan, S. Synthesis and Study of Antibacterial and Antifungal Activities of Novel 8-Methyl-7,9-diaryl-1,2,4,8-tetraazaspiro[4.5]decan-3-thiones. ChemInform 36, (2005).

  62. Abdelshaheed, M. M., Fawzy, I. M., El-Subbagh, H. I. & Youssef, K. M. Piperidine nucleus in the field of drug discovery. Future J. Pharm. Sci. 7, 188 (2021).

    Google Scholar 

  63. Leghari, Q. A. et al. Evaluation of anti-inflammatory and antibacterial potential of newly synthesized 4-(2-Keto-1-benzimidazollinyl) derivatives of piperidine. Pak J. Pharm. Sci. 33, 615–619 (2020).

    Google Scholar 

  64. Naicker, L., Venugopala, K., Shode, F. & Odhav, B. Antimicrobial and antioxidant activities of piperidine derivatives. Afr. J. Pharm. Pharmacol. 9, 783–792 (2015).

    Google Scholar 

  65. Elleuch, L. et al. Cyclic lipopeptides and other bioactive secondary metabolites from a new terrestrial streptomyces sp. TN272. Afr. J. Microbiol. Res. 6, 2202–2210 (2012).

    Google Scholar 

  66. Hamed, M., Shawky, L. & Fahmy, N. Antimicrobial activity of marine actinomycetes and the optimization of culture conditions for the production of antimicrobial Agent(s). J. Pure Appl. Microbiol. 13, 2177–2188 (2019).

    Google Scholar 

  67. Hsouna, A. B. et al. Chemical composition, cytotoxicity effect and antimicrobial activity of ceratonia siliqua essential oil with preservative effects against Listeria inoculated in minced beef meat. Int. J. Food Microbiol. 148, 66–72 (2011).

    Google Scholar 

  68. Alshaibani, M. et al. Isolation, Purification, and characterization of five active Diketopiperazine derivatives from endophytic streptomyces SUK 25 with antimicrobial and cytotoxic activities. J. Microbiol. Biotechnol. 27, 1249–1256 (2017).

    Google Scholar 

  69. Bojarska, J. et al. Structural and biofunctional insights into the Cyclo(Pro-Pro-Phe-Phe-) scaffold from experimental and in Silico studies: melanoma and beyond. Int. J. Mol. Sci. 23, 7173 (2022).

    Google Scholar 

  70. de Kievit, T. R. & Iglewski, B. H. Bacterial quorum sensing in pathogenic relationships. Infect. Immun. 68, 4839–4849 (2000).

    Google Scholar 

  71. Kozlovsky, A. G. et al. Penicillium aurantiogriseum Dierckx 1901: producer of Diketopiperazine alkaloids (Roquefortine and 3,12-Dihydroroquefortine), isolated from permafrost. Appl. Biochem. Microbiol. 39, 393–397 (2003).

    Google Scholar 

Download references