References
-
Uddina, T. et al. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J. Infect. Public Health, 14(12) 1750–1766. https://doi.org/10.1016/j.jiph.2021.10.020
-
Ahmed, S. et al. Antimicrobial resistance: Impacts, challenges, and future prospects. J. Med. Surg. Public. Health. 2 https://doi.org/10.1016/j.glmedi.2024.100081 (2024).
-
Zhu, Y., Huang, W. E. & Yang, Q. Clinical perspective of antimicrobial resistance in bacteria. Infect. Drug Resist. 15, 735–746 (2022).
-
Nwobodo, D. C. et al. Antibiotic resistance: the challenges and some emerging strategies for tackling a global menace. J. Clin. Lab. Anal. 36, e24655 (2022).
-
Patel, J. K., Madaan, S. & Archana, G. Antibiotic producing endophytic Streptomyces spp. Colonize above-ground plant parts and promote shoot growth in multiple healthy and pathogen-challenged cereal crops. Microbiol. Res. 215, 36–45 (2018).
-
Santoyo, G., Moreno-Hagelsieb, G., Orozco-Mosqueda, M. C. & Glick, B. R. Plant growth-promoting bacterial endophytes. Microbiol. Res. 183, 92–99 (2016).
-
Hardoim, P. R., van Overbeek, L. S. & van Elsas, J. D. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 16, 463–471 (2008).
-
Veilumuthu, P. et al. Genomic insights into an endophytic streptomyces sp. VITGV156 for antimicrobial compounds. Front Microbiol 15, 1-19 (2024).
-
Yadav, R. P. et al. Antibacterial, Antifungal, and cytotoxic effects of endophytic streptomyces species isolated from the Himalayan regions of Nepal and their metabolite study. Biomedicines 12, 2192 (2024).
-
Gouda, S., Das, G., Sen, S. K., Shin, H. S. & Patra, J. K. Endophytes: A treasure house of bioactive compounds of medicinal importance. Front. Microbiol. 7, 1538 (2016).
-
Singh, R. & Dubey, A. K. Diversity and applications of endophytic actinobacteria of plants in special and other ecological niches. Frontiers Microbiology 9, 1-30 (2018).
-
Alam, K. et al. Streptomyces: the biofactory of secondary metabolites. Front. Microbiol. 13, 968053 (2022).
-
Islam, M. M., Saha, S., Sahoo, P. & Mandal, S. Endophytic streptomyces sp. MSARE05 isolated from roots of peanut plant produces a novel antimicrobial compound. J. Appl. Microbiol. 135, lxae051 (2024).
-
Coombs, J. T. & Franco, C. M. M. Isolation and identification of actinobacteria from Surface-Sterilized wheat roots. Appl. Environ. Microbiol. 69, 5603 (2003).
-
Filip, P., Weber, R. W. S., Sterner, O. & Anke, T. Hormonemate, a new cytotoxic and apoptosis-inducing compound from the endophytic fungus Hormonema dematioides. I. Identification of the producing strain, and isolation and biological properties of hormonemate. Z. Naturforsch C J. Biosci. 58, 547–552 (2003).
-
Eevers, N. et al. Optimization of isolation and cultivation of bacterial endophytes through addition of plant extract to nutrient media. Microb. Biotechnol. 8, 707–715 (2015).
-
Weyens, N. et al. Potential of Willow and its genetically engineered associated bacteria to remediate mixed cd and toluene contamination. J. Soils Sediments. 13, 176–188 (2013).
-
Abd-Elnaby, H., Abo-Elala, G., Abdel-Raouf, U., Abd-elwahab, A. & Hamed, M. Antibacterial and anticancer activity of marine Streptomyces parvus: optimization and application. Biotechnol. Biotechnol. Equip. 30, 180–191 (2016).
-
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997).
-
Felsenstein, J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376 (1981).
-
Posada, D. & Crandall, K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817–818 (1998).
-
Perrière, G. & Gouy, M. WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78, 364–369 (1996).
-
Chen, H. et al. Antimicrobial activity of secondary metabolites from streptomyces sp. K15, an endophyte in houttuynia cordata thunb. Nat. Prod. Res. 29, 2223–2225 (2015).
-
Jejurikar, B. L. & Rohane, S. H. Drug designing in discovery studio. Asian J. Res. Chem. 14, 135–138 (2021).
-
Vilar, S., Cozza, G. & Moro, S. Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular Docking to drug discovery. Curr. Top. Med. Chem. 8, 1555–1572 (2008).
-
Van Der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005).
-
Dorival, J. et al. Insights into a dual function amide oxidase/macrocyclase from Lankacidin biosynthesis. Nat. Commun. 9, 3998 (2018).
-
Schuwirth, B. S. et al. Structures of the bacterial ribosome at 3.5 A resolution. Science 310, 827–834 (2005).
-
Stratigopoulos, G. Regulation of Tylosin Production in Streptomyces Fradiae (University of Leicester, 2002).
-
Mosbacher, T. G., Bechthold, A. & Schulz, G. E. Crystal structure of the avilamycin resistance-conferring methyltransferase AviRa from streptomyces viridochromogenes. J. Mol. Biol. 329, 147–157 (2003).
-
Fahim, A. M. Exploring novel benzene sulfonamide derivatives: Synthesis, ADME studies, anti-proliferative activity, Docking simulation, and emphasizing theoretical investigations. J. Indian Chem. Soc. 101, 101211 (2024).
-
Fahim, A. M., Abdelhamid, S. A. & Hameed, T. A. Antimicrobial, antioxidant activities and ADME studies of novel BaSnO3 Sulphone cellulose with Docking simulation. J. Mol. Struct. 1325, 140945 (2025).
-
Tolan, H. E. M., Abdelhamid, S. A. & Fahim, A. M. Exploring novel bromo heterocyclic scaffold and theoretical explanation of their biological actions. J. Mol. Struct. 1318, 139225 (2024).
-
Elsayed, G. H. & Fahim, A. M. Studying the impact of Chitosan salicylaldehyde/schiff base/CuFe2O4 in PC3 cells via theoretical studies and Inhibition of PI3K/AKT/mTOR signalling. Sci. Rep. 15, 4129 (2025).
-
Tolan, H. E. M., Ismael, E. H. I., Awad, H. M. & Fahim, A. M. New mercaptopyrimidine derivatives synthesized with expected antimicrobial and antioxidant properties and theoretical study. J. Mol. Struct. 1324, 140795 (2025).
-
Ali, A. R. et al. Isolation and identification of endophytic actinobacteria from citrullus colocynthis (L.) Schrad and their antibacterial properties. Microb. Cell. Fact. 21, 1–17 (2022).
-
Devi, S., Sharma, M. & Manhas, R. K. Investigating the plant growth promoting and biocontrol potentiality of endophytic streptomyces SP. SP5 against early blight in solanum lycopersicum seedlings. BMC Microbiol. 22, 285 (2022).
-
Kanini, G. S., Katsifas, E. A., Savvides, A. L. & Karagouni, A. D. Streptomyces rochei ACTA1551, an Indigenous Greek Isolate Studied as a Potential Biocontrol Agent against Fusarium oxysporum f.sp. lycopersici. BioMed Res Int. 2013,387230 (2013).
-
Pazhanimurugan, R., Radhakrishnan, M., Shanmugasundaram, T., Gopikrishnan, V. & Balagurunathan, R. Terpenoid bioactive compound from streptomyces rochei (M32): taxonomy, fermentation and biological activities. World J. Microbiol. Biotechnol. 32, 161 (2016).
-
Al-Ansari, M., Alkubaisi, N., Vijayaragavan, P. & Murugan, K. Antimicrobial potential of streptomyces sp. to the gram positive and gram negative pathogens. J. Infect. Public. Health. 12, 861–866 (2019).
-
Malash, M., El-Naggar, M. & Ibrahim, M. Antimicrobial activities of a novel marine streptomyces sp. MMM2 isolated from El-Arish coast, Egypt. Egypt. J. Aquat. Biology Fisherie. 26, 1317–1339 (2022).
-
El-Shamy, N. T. et al. DFT, ADMET and molecular Docking investigations for the antimicrobial activity of 6,6′-Diamino-1,1′,3,3′-tetramethyl-5,5′-(4-chlorobenzylidene)bis[pyrimidine-2,4(1H,3H)-dione]. Molecules 27, 620 (2022).
-
Sharma, V., Chitranshi, N. & Agarwal, A. K. Significance and Biological Importance of Pyrimidine in the Microbial World. Int. J. Med. Chem. 2014, 202784 (2014).
-
Madasu, C., Gudem, S., Sistla, R. & Uppuluri, V. M. Synthesis and anti-inflammatory activity of some novel pyrimidine hybrids of myrrhanone A, a bicyclic triterpene of commiphora mukul gum resin. Monatsh Chem. 148, 2183–2193 (2017).
-
Ren, J., Wang, J., Karthikeyan, S., Liu, H. & Cai, J. Natural anti-phytopathogenic fungi compound phenol, 2, 4-bis (1, 1-dimethylethyl) from Pseudomonas fluorescens TL-1. Indian J. Biochem. Biophys. 56, 162–168 (2019).
-
Choi, S. J. et al. 2,4-Di-tert-butylphenol from sweet potato protects against oxidative stress in PC12 cells and in mice. J. Med. Food. 16, 977–983 (2013).
-
Rangel-Sánchez, G., Castro-Mercado, E. & García-Pineda, E. Avocado roots treated with Salicylic acid produce phenol-2,4-bis (1,1-dimethylethyl), a compound with antifungal activity. J. Plant. Physiol. 171, 189–198 (2014).
-
Karthick, P. & Mohanraju, R. Antimicrobial potential of epiphytic bacteria associated with seaweeds of little Andaman, India. Front. Microbiol. 9, 611 (2018).
-
Pawar, R. et al. Epiphytic marine pigmented bacteria: A prospective source of natural antioxidants. Braz J. Microbiol. 46, 29–39 (2015).
-
Soliman, M. O., Suleiman, W. B., Roushdy, M. M., Elbatrawy, E. N. & Gad, A. M. Characterization of some bacterial strains isolated from the Egyptian Eastern and Northern coastlines with antimicrobial activity of Bacillus zhangzhouensis OMER4. Acta Oceanol. Sin. 41, 86–93 (2022).
-
Viszwapriya, D., Prithika, U., Deebika, S., Balamurugan, K. & Pandian, S. K. In vitro and in vivo antibiofilm potential of 2,4-Di-tert-butylphenol from seaweed surface associated bacterium Bacillus subtilis against group A streptococcus. Microbiol. Res. 191, 19–31 (2016).
-
Stamos, J., Sliwkowski, M. X. & Eigenbrot, C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem. 277, 46265–46272 (2002).
-
Beaudegnies, R., De Mesmaeker, A., Mallinger, A., Baalouch, M. & Goetz, A. Design and synthesis of novel Spirocyclopropyl cyclohexane-1,3-diones and – 1,3,5-triones for their incorporation into potent HPPD inhibitors. Tetrahedron Lett. 51, 2741–2744 (2010).
-
Xie, Y. Q. et al. Design, synthesis, and biological activity of oxime ether strobilurin derivatives containing Indole moiety as novel fungicide. Chem. Biol. Drug Des. 85, 743–755 (2015).
-
Peng, W. et al. Characteristics of antibacterial molecular activities in Poplar wood extractives. Saudi J. Biol. Sci. 24, 399–404 (2017).
-
Elleuch, L. et al. Bioactive secondary metabolites from a new terrestrial streptomyces sp. TN262. Appl. Biochem. Biotechnol. 162, 579–593 (2010).
-
Eleazu, C. O. Characterization of the natural products in Cocoyam (Colocasia esculenta) using GC-MS. Pharm. Biol. 54, 2880–2885 (2016).
-
Amrati, F. E. Z. et al. Caralluma Europaea (Guss.) N.E.Br.: Anti-Inflammatory, Antifungal, and antibacterial activities against nosocomial Antibiotic-Resistant microbes of chemically characterized fractions. Molecules 26, 636 (2021).
-
Ahmad, B., Khan, I., Bashir, S. & Azam, S. Chemical composition and antifungal, phytotoxic, Brine shrimp cytotoxicity, insecticidal and antibacterial activities of the essential oils of acacia Modesta. JMPR 6, 4653–4659 (2012).
-
Grover, N. & Patni, V. Phytochemical characterization using various solvent extracts and GC-MS analysis of methanolic extract of Woodfordia fruticosa (L.) Kurz. Leaves. Int. J. Pharm. Pharm. Sci. 5, 291–295 (2013).
-
Balasubramanian, S., Ramalingan, C., Aridoss, G. & Kabilan, S. Synthesis and Study of Antibacterial and Antifungal Activities of Novel 8-Methyl-7,9-diaryl-1,2,4,8-tetraazaspiro[4.5]decan-3-thiones. ChemInform 36, (2005).
-
Abdelshaheed, M. M., Fawzy, I. M., El-Subbagh, H. I. & Youssef, K. M. Piperidine nucleus in the field of drug discovery. Future J. Pharm. Sci. 7, 188 (2021).
-
Leghari, Q. A. et al. Evaluation of anti-inflammatory and antibacterial potential of newly synthesized 4-(2-Keto-1-benzimidazollinyl) derivatives of piperidine. Pak J. Pharm. Sci. 33, 615–619 (2020).
-
Naicker, L., Venugopala, K., Shode, F. & Odhav, B. Antimicrobial and antioxidant activities of piperidine derivatives. Afr. J. Pharm. Pharmacol. 9, 783–792 (2015).
-
Elleuch, L. et al. Cyclic lipopeptides and other bioactive secondary metabolites from a new terrestrial streptomyces sp. TN272. Afr. J. Microbiol. Res. 6, 2202–2210 (2012).
-
Hamed, M., Shawky, L. & Fahmy, N. Antimicrobial activity of marine actinomycetes and the optimization of culture conditions for the production of antimicrobial Agent(s). J. Pure Appl. Microbiol. 13, 2177–2188 (2019).
-
Hsouna, A. B. et al. Chemical composition, cytotoxicity effect and antimicrobial activity of ceratonia siliqua essential oil with preservative effects against Listeria inoculated in minced beef meat. Int. J. Food Microbiol. 148, 66–72 (2011).
-
Alshaibani, M. et al. Isolation, Purification, and characterization of five active Diketopiperazine derivatives from endophytic streptomyces SUK 25 with antimicrobial and cytotoxic activities. J. Microbiol. Biotechnol. 27, 1249–1256 (2017).
-
Bojarska, J. et al. Structural and biofunctional insights into the Cyclo(Pro-Pro-Phe-Phe-) scaffold from experimental and in Silico studies: melanoma and beyond. Int. J. Mol. Sci. 23, 7173 (2022).
-
de Kievit, T. R. & Iglewski, B. H. Bacterial quorum sensing in pathogenic relationships. Infect. Immun. 68, 4839–4849 (2000).
-
Kozlovsky, A. G. et al. Penicillium aurantiogriseum Dierckx 1901: producer of Diketopiperazine alkaloids (Roquefortine and 3,12-Dihydroroquefortine), isolated from permafrost. Appl. Biochem. Microbiol. 39, 393–397 (2003).
