Morpho-phytochemical and molecular diversity in cherry tomato (Solanum lycopersicum var. cerasiforme) germplasm

morpho-phytochemical-and-molecular-diversity-in-cherry-tomato-(solanum-lycopersicum-var.-cerasiforme)-germplasm
Morpho-phytochemical and molecular diversity in cherry tomato (Solanum lycopersicum var. cerasiforme) germplasm

References

  1. Anwarzai, N. et al. Evaluation of cherry tomato (Solanum lycopersicum L. var. cerasiforme) genotypes for growth and yield parameters. Int. J. Curr. Microbiol. Appl. Sci. 9(3), 459–466 (2020).

    Google Scholar 

  2. Hinsermu, M. et al. Performance of cherry tomato (Solanum lycopersicum var. cerasiforme) genotypes for yield and fruit quality in Ethiopia. Korean J. Int. Agric. Dev. 36(4), 379–386 (2024).

    Google Scholar 

  3. Chang, Y. et al. Fruit quality analysis and flavor comprehensive evaluation of cherry tomatoes of different colors. Foods 13(12), 1898 (2024).

    Google Scholar 

  4. Wu, J. S. B. & Nelson, P. E. Tomato products. In Processing Vegetables 389–415 (Routledge, 2023).

    Google Scholar 

  5. Thakur, N., Dogra, B. S., Kaur, J. & Harish, B. Genetic diversity of morpho-physiological traits in cherry tomato (Solanum lycopersicum var. cerasiforme) in north-western Himalayas. Bangladesh J. Bot. 54(1), 105–111. https://doi.org/10.3329/bjb.v54i1.80310 (2025).

    Google Scholar 

  6. Yang, Z., Li, W., Li, D. & Chan, A. S. Evaluation of nutritional compositions, bioactive components, and antioxidant activity of three cherry tomato varieties. Agronomy 13(3), 637 (2023).

    Google Scholar 

  7. Martí, R., Roselló, S. & Cebolla-Cornejo, J. Tomato as a source of carotenoids and polyphenols targeted to cancer prevention. Cancers 8(6), 58 (2016).

    Google Scholar 

  8. Tsouvaltzis, P., Gkountina, S. & Siomos, A. S. Quality traits and nutritional components of cherry tomato in relation to harvest, storage and fruit position. Plants 12(2), 315. https://doi.org/10.3390/plants12020315 (2023).

    Google Scholar 

  9. Stajčić, S. et al. Tomato waste: Carotenoids content, antioxidant and cell growth activities. Food Chem. 172, 225–232 (2015).

    Google Scholar 

  10. Fahim, S. M. et al. Nutrition and food security in Bangladesh: Achievements, challenges, and COVID-19 impact. J. Infect. Dis. 224(Suppl 7), S901–S909 (2021).

    Google Scholar 

  11. Rashid, M. H. A., Rahman, M. F., Karim, M. R., Saha, R. & Hossain, M. I. Improving growth, yield and quality of cherry tomato (Solanum lycopersicum var. cerasiforme) using staking and mixed fertilization. J. Agric. Food Environ. 3(3), 77–85 (2022).

    Google Scholar 

  12. Zihad, S. N. K. et al. Nutritional value and antioxidant capacity of coastal Bangladeshi leafy vegetables. Heliyon 5(11), e02768 (2019).

    Google Scholar 

  13. Ullah, M. Z. Phenotypic variability, trait association and path coefficient analysis of cherry tomato (Solanum lycopersicum Var. Cerasiforme) Genotypes. Trends Biol. Sci. 1(1), 69–79 (2025).

    Google Scholar 

  14. Li, Y. H. et al. Genetic diversity analysis and multivariate evaluation of cherry tomato by phenotypic traits in South China. Acta Hortic. Sin. 48(9), 1717–1730 (2021).

    Google Scholar 

  15. Nankar, A. N., Tringovska, I., Grozeva, S., Ganeva, D. & Kostova, D. Tomato phenotypic diversity via conventional and high-throughput phenotyping. Plants 9(2), 197 (2020).

    Google Scholar 

  16. Sarker, A. et al. Selection of superior genotypes using morpho-biochemical traits and crossability in cherry tomato (Solanum lycopersicum var. cerasiforme). Discov. Plants 2, 85. https://doi.org/10.1007/s44372-025-00162-y (2025).

    Google Scholar 

  17. Sinha, A., Singh, P., Bhardwaj, A. & Verma, R. B. PCA approach for screening tomato germplasm under polyhouse. J. Exp. Agric. Int. 43(9), 67–72 (2021).

    Google Scholar 

  18. Alhasnawi, A. N., Alasadiy, Y. D. K. & Doni, F. Assessment of the genetic diversity in plants using molecular markers: A review and perspective. Trop. Agric. 101(1), 120–134 (2024).

    Google Scholar 

  19. Powell, W., Machray, G. C. & Provan, J. Polymorphism revealed by simple sequence repeats. Trends Plant Sci. 1(7), 215–222 (1996).

    Google Scholar 

  20. Delices, G. et al. Genetic diversity of Solanum lycopersicum var. cerasiforme in Veracruz, Mexico. Acta Biol. Colomb. 29(3), 142–149 (2024).

    Google Scholar 

  21. Aguirre, N. C., López, W., Orozco-Cárdenas, M., Coronado, Y. M. & Vallejo-Cabrera, F. Use of microsatellites for genetic diversity in cherry tomato. Bragantia 76, 220–228 (2017).

    Google Scholar 

  22. Kumar, D., Shukla, N., Sahu, V. K., Sharma, D. S. D. & Chandel, G. Genetic variation in tomato using SSR markers. Ecol. Environ. Conserv. 22(Suppl), S317–S325 (2016).

    Google Scholar 

  23. de Carvalho, L. M. J. et al. Total carotenoids, α- and β-carotene of landrace pumpkins (Cucurbita moschata Duch.). Food Res. Int. 47(2), 337–340 (2012).

    Google Scholar 

  24. Ali, A., Maqbool, M., Alderson, P. G. & Zahid, N. Gum arabic edible coating on antioxidant capacity of tomato (Solanum lycopersicum) during storage. Postharvest Biol. Technol. 76, 119–124 (2013).

    Google Scholar 

  25. DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T. & Smith, F. Colorimetric method for determination of sugars. Anal. Chem. 28(3), 350–356. https://doi.org/10.1021/ac60111a017 (1956).

    Google Scholar 

  26. Cochran, W. G. & Cox, G. M. Experimental Designs (Wiley, 1950).

    Google Scholar 

  27. R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing (2023)

  28. Pilgrim, M. & Willison, S. Dive into Python 3 (Apress, 2009).

    Google Scholar 

  29. Ward, J. H. Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58(301), 236–244. https://doi.org/10.1080/01621459.1963.10500845 (1963).

    Google Scholar 

  30. Kassambara, A. & Mundt, F. Package ‘factoextra’: Extract and visualize multivariate analyses. J. Stat. Softw. https://doi.org/10.18637/jss.v076.i02 (2017).

    Google Scholar 

  31. Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155(2), 945–959. https://doi.org/10.1093/genetics/155.2.945 (2000).

    Google Scholar 

  32. Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14(8), 2611–2620 (2005).

    Google Scholar 

  33. Earl, D. A. & VonHoldt, B. M. Structure harvester: A website and program for visualizing structure output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).

    Google Scholar 

  34. Pang, Z. et al. MetaboAnalyst 5.0: From raw spectra to functional insights. Nucleic Acids Res. 49(W1), W388–W396. https://doi.org/10.1093/nar/gkab382 (2021).

    Google Scholar 

  35. Basavaraj, N. et al. Genetic diversity in brinjal (Solanum melongena L.) for yield traits. Int. J. Res. Agron. 7(11S), 554–558. https://doi.org/10.33545/2618060X.2024.v7.i11Sh.2056 (2024).

    Google Scholar 

  36. Pidigam, S. et al. Genetic diversity, population structure and validation of SSR markers linked to Sw-5 and I-2 genes in tomato. Physiol. Mol. Biol. Plants 27, 1695–1710. https://doi.org/10.1007/s12298-021-01037-8 (2021).

    Google Scholar 

  37. Appiah, A. et al. Genetic diversity among Ghanaian okra (Abelmoschus esculentus L.) using morphological and molecular markers. Ecol. Genet. Genom. 35, 100347. https://doi.org/10.1016/j.egg.2025.100347 (2025).

    Google Scholar 

  38. Oliveira, M. M. et al. Genetic diversity among soybean (Glycine max) genotypes using univariate and multivariate analysis. Genet. Mol. Res. 16, 1–10. https://doi.org/10.4238/gmr16029661 (2017).

    Google Scholar 

  39. Wahyudi, A., Hakim, N. A. & Rachman, M. S. Characteristics of six cherry tomato genotypes for breeding. Biodiversitas 25(10), 3850–3859 (2024).

    Google Scholar 

  40. Quispe-Choque, G., Rojas-Ledezma, S. & Maydana-Marca, A. Morphological diversity of tomato fruit via digital phenotyping. J. Selva Andina Res. Soc. 13(2), 51–68 (2022).

    Google Scholar 

  41. Renuka, D. M., Sadashiva, A. T., Kavita, B. T., Vijendrakumar, R. C. & Hanumanthiah, M. R. Evaluation of cherry tomato lines (Solanum lycopersicum var. cerasiforme) for growth, yield and quality traits. Plant Arch. 14(1), 151–154 (2014).

    Google Scholar 

  42. Henareh, M., Dursun, A. & Mandoulakani, B. A. Genetic diversity in tomato landraces from Turkey and Iran revealed by morphology. Acta Sci. Pol. Hortorum Cultus 14(2), 87–96 (2015).

    Google Scholar 

  43. Hussain, K. et al. Genetic variability in cherry tomato for growth, yield, and quality in open field. Int. J. Agric. Appl. Sci. 2(2), 60–64 (2021).

    Google Scholar 

  44. Radzevičius, A., Karklelienė, R., Bobinas, Č & Viškelis, P. Nutrition quality of different tomato cultivars. Zemdirbyste-Agric. 96(3), 67–75 (2009).

    Google Scholar 

  45. Ramya, R., Ananthan, M. & Krishnamoorthy, V. Evaluation of cherry tomato [Solanum lycopersicum L. var. cerasiforme] genotypes for yield and quality. Asian J. Hortic. 11(2), 329–334 (2016).

    Google Scholar 

  46. Mukherjee, D. et al. Breeding potential of cherry tomato grown in open field to identify desirable alleles. J. Veg. Sci. 9, 2152–2171 (2020).

    Google Scholar 

  47. Akhter, A. et al. Genetic diversity in cherry tomato (Solanum lycopersicum L. var. cerasiforme) for quantitative and qualitative traits. Chem. Eng. 2(2), 32–36. https://doi.org/10.53709/CHE.2021.v02i02.005 (2021).

    Google Scholar 

  48. Mitul, R. Y., Haque, M. A., Rima, S. A. & Begum, S. N. Field performance and genetic analysis of selected tomato (Lycopersicon esculentum Mill.) genotypes. J. Bangladesh Agric. Univ. 14(1), 31–36 (2016).

    Google Scholar 

  49. Bhattarai, K., Louws, F. J., Williamson, J. D. & Panthee, D. R. Diversity of tomato genotypes based on morphological traits for fresh market in eastern USA. Aust. J. Crop Sci. 10(8), 1097–1103 (2016).

    Google Scholar 

  50. Williams, G. & Yesudhas, A. Qualitative characterization and clustering in tomato (Solanum lycopersicum L.) germplasm. J. Appl. Nat. Sci. 15(3), 900–907 (2023).

    Google Scholar 

  51. Thakur, A., Patel, S. A. H., Jindal, S. K. & Chawla, N. Appraisal of cherry tomato genotypes for diversity and PCA. Veg. Sci. 51(1), 103–114 (2024).

    Google Scholar 

  52. Glogovac, S. et al. PCA of tomato genotypes by morphological and biochemical quality indicators. Ratar. Povrtar. 49(3), 296–301 (2012).

    Google Scholar 

  53. Ceballos-Aguirre, N., Vallejo-Cabrera, F. A. & Arango-Arango, N. Antioxidant content in introductions of cherry tomato (Solanum spp.). Acta Agron. 61, 230–238 (2012).

    Google Scholar 

  54. Rai, A. K., Vikram, A. & Pal, S. Genetic characterization of tomato germplasm for yield and quality by PCA. Res. J. Agric. Sci. 8(5), 1171–1174 (2017).

    Google Scholar 

  55. Okumuş, A. & Dağidir, Ş. Genetic diversity in tomato (Lycopersicon esculentum Mill.) landraces using SSR in Turkey. Front. Life Sci. Relat. Technol. 2(2), 51–59 (2021).

    Google Scholar 

  56. Todorovska, E. et al. Genetic variation in Bulgarian tomato genotypes using fluorescent SSRs. Biotechnol. Biotechnol. Equip. 28, 68–76. https://doi.org/10.1080/13102818.2014.901683 (2014).

    Google Scholar 

  57. Gonias, E. D. et al. Exploring genetic diversity of tomato germplasm using SSR and SCAR markers. Genet. Resour. Crop Evol. 66, 1295–1309. https://doi.org/10.1007/s10722-019-00786-6 (2019).

    Google Scholar 

  58. Kumar, V. V., Pandey, A. & Kumar, A. J. Genetic parameters, diversity and population structure in tomato based on traits and microsatellites. Plant Genet. Resour. 34(03), 437–446 (2021).

    Google Scholar 

  59. Khan, N. et al. Natural variation for seedling traits and links with seed dimensions in tomato. PLoS One 7, e43991 (2012).

    Google Scholar 

  60. Maciel, G. M., Finzi, R. R., Carvalho, F. J., Marquez, G. R. & Clemente, A. A. Agronomic performance and genetic dissimilarity among cherry tomato genotypes. Hortic. Bras. 36, 167–172 (2018).

    Google Scholar 

Download references