Effect of the biologically synthesized rGO NPs and Fe2O3/rGO NCs on phytochemical assay, toxicity, and metabolism of Achillea millefolium plant

effect-of-the-biologically-synthesized-rgo-nps-and-fe2o3/rgo-ncs-on-phytochemical-assay,-toxicity,-and-metabolism-of-achillea-millefolium-plant
Effect of the biologically synthesized rGO NPs and Fe2O3/rGO NCs on phytochemical assay, toxicity, and metabolism of Achillea millefolium plant

References

  1. Rajesh, M. V. & Elumalai, K. Comprehensive review of platinum nanoparticles: Properties, Applications, and toxicological considerations. Biomed Mater. Devices 1–23 (2025).

  2. Mallick, T., Joshi, R. K. & Mishra, R. Nanoparticle-Based Biosensors for Pathogen Detection: Current Updates and Future Prospects. BioNanoScience 15(3), 523 (2025).

  3. Lakhani, K. G., Hamid, R., Motamedi, E. & Marviya, G. A review on plant metabolite-mediated nanoparticle synthesis: sustainable applications in horticultural crops. Front. Nanotechnol. 7, 1545413 (2025).

    Google Scholar 

  4. Jafarirad, S., Kosari-Nasab, M., Aminpour, M. & Rezaei, Z. Effect of the green synthesized rGO and Mg/rGO nanocomposites on the phytochemical assay, toxicity, and metabolism of. Vitro Cultures Environ. Sci. Pollut Res. 29(30), 46243–46258 (2022).

    Google Scholar 

  5. Singh, D. & Kumar, A. Investigating long-term effect of nanoparticles on growth of. Plants: trans-generational Study Ecotoxicol. 27(1), 23–31 (2018).

    Google Scholar 

  6. Mahjouri, S., Movafeghi, A., Divband, B., Kosari-Nasab, M. & Kazemi, E. M. Assessing the toxicity of silver nanoparticles in cell suspension culture of. Biointerface Res. Appl. Chem. 8(3), 3252–3258 (2018).

    Google Scholar 

  7. Wang, J. Effect of nanoparticles on the growth of Okra cultivated in soil affected by Rocky desertification. Sci. Rep. 15(1), 18930 (2025).

    Google Scholar 

  8. Wang, Y. A nano-bioengineered Cobalt oxide biostimulant mediated regulation of physiological, biochemical, and antioxidant mechanisms in Zea Mays. Sci. Rep. 15(1), 16140 (2025).

    Google Scholar 

  9. Batool, S. et al. Betaine-Loaded Foeniculum Vulgare@ Fe-MOF: A Novel Approach to Combat Bleomycin-Induced Hepatotoxicity in Rats. J Environ. Chem. Eng 120642 (2025).

  10. Mahjouri, S., Movafeghi, A., Divband, B. & Kosari-Nasab, M. Toxicity impacts of chemically and biologically synthesized CuO nanoparticles on cell suspension cultures of Nicotiana tabacum. Plant. Cell. Tissue Organ. Cult. 135 (2), 223–234 (2018).

    Google Scholar 

  11. Ghafarifarsani, H. Comparative effect of chemical and green zinc nanoparticles on the growth, hematology, serum biochemical, antioxidant parameters, and immunity in serum and mucus of goldfish. (Linnaeus 1758) Biol. Trace Elem. Res. 202(3), 1264–1278 (2024). al.

    Google Scholar 

  12. Rezaei, Z., Jafarirad, S. & Kosari-Nasab, M. Modulation of secondary metabolite profiles by biologically synthesized MgO/perlite nanocomposites in. plant. organ. Cultures J. Hazard. Mater. 380, 120878 (2019).

    Google Scholar 

  13. Jadid, N. An ethnobotanical study of medicinal plants used by the Tengger tribe in Ngadisari village, Indonesia. PLoS One. 15(7), e0235886 (2020).

    Google Scholar 

  14. Varma, J., Kulshrestha, A. K., Pankaj, P. P., Upadhye, V. J. & Shrivastav, A. In Biotechnological Intervention in Production of Bioactive Compounds: Biosynthesis, Characterization and Applications 163–176 (Springer Nature Switzerland, 2025).

  15. Aly, S. H., Khan, H. & Farag, M. A. Optimization of lavender essential oil and phenolic yield: advances in Extraction, Metabolomics, and functional benefits. Phytochem Anal (2025).

  16. Khan, A. Plant secondary metabolites—Central regulators against abiotic and biotic stresses. Metabolites 15(4), 276 (2025).

    Google Scholar 

  17. Goura, K. Beyond survival: the role of secondary metabolites in plant defense mechanisms. J. Crop Health. 77(4), 121 (2025). .

    Google Scholar 

  18. Ahmad, P. Et al. Plant Metabolites and Regulation Under Environmental Stress (Academic, 2018).

  19. Vyavahare, G. D., Patil, R. R. & Park, J. H. Nanoparticle-assisted elicitation of therapeutically important secondary metabolites in plants. Plant Growth Regul 1–28 (2025).

  20. Ebadollahi, R., Jafarirad, S., Kosari-Nasab, M. & Mahjouri, S. Effect of explant source, perlite nanoparticles and TiO. Sci. Rep. 9(1), 12998 (2019).

    Google Scholar 

  21. Jafarirad, S., Kosari-Nasab, M., Tavana, R. M., Mahjouri, S. & Ebadollahi, R. Impacts of manganese bio-based nanocomposites on phytochemical classification, growth and physiological responses of hypericum perforatum L. shoot cultures. Ecotoxicol. Environ. Saf. 209, 111841 (2021).

    Google Scholar 

  22. Ghanati, F., Bakhtiarian, S., Parast, B. M. & Behrooz, M. K. Production of new active phytocompounds by. L after Elicitation Silver Nanopart. Methyl Jasmonate Biosci. Biotechnol. Res. Asia. 11(1), 391–399 (2014).

    Google Scholar 

  23. Yousaf, R. Iron oxide nanoparticles and light intensity modulate biomass, antioxidant capacity and anti-leishmanial activity in callus cultures of. Plant. Cell. Tissue Organ. Cult. 160(2), 27 (2025). .

    Google Scholar 

  24. Chandran, H., Meena, M., Barupal, T. & Sharma, K. Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotechnol. Rep. 26, e00450 (2020).

    Google Scholar 

  25. Falconieri, D. Chemical composition and biological activity of the volatile extracts of. Nat. Prod. Commun. 6(10), 1934578X1100601030 (2011). .

    Google Scholar 

  26. Pica, P. Bioassay-guided Isolation and Analysis of Phytochemicals with Endocannabinoid Activity inAchillea Millefolium L (Université d’Ottawa/University of Ottawa, 2025).

  27. Behzad, F., Jafarirad, S., Samadi, A. & Barzegar, A. A systematic investigation on spectroscopic, conformational, and interactional properties of polypeptide/nanomaterial complex: effects of bio-based synthesized maghemite nanocomposites on human serum albumin. Soft Mater. 18(4), 471–486 (2020).

    Google Scholar 

  28. Wellburn, A. R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant. Physiol. 144(3), 307–313 (1994).

    Google Scholar 

  29. Begum, P., Ikhtiari, R. & Fugetsu, B. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 49(12), 3907–3919 (2011).

    Google Scholar 

  30. Cheng, F. Graphene oxide modulates root growth of. L Regulates ABA IAA Concentration J. Plant. Physiol. 193, 57–63 (2016). .

    Google Scholar 

  31. Ali Babazadeh, B., Razeghi, J., Jafarirad, S. & Motafakkerazad, R. Are biosynthesized nanomaterials toxic for the environment? Effects of perlite and CuO/perlite nanoparticles on unicellular algae. Ecotoxicology 30(5), 899–913 (2021).

    Google Scholar 

  32. Zuo, Y. & Zhang, F. Soil and crop management strategies to prevent iron deficiency in crops. Plant. Soil. 339(1), 83–95 (2011).

    Google Scholar 

  33. Samaranayake, P., Peiris, B. D. & Dssanayake, S. Effect of excessive ferrous (Fe2+) on growth and iron content in rice (Oryza sativa). Int J. Agric. Biol 14(2) (2012).

  34. Briat, J. F., Curie, C. & Gaymard, F. Iron utilization and metabolism in plants. Curr. Opin. Plant. Biol. 10(3), 276–282 (2007).

    Google Scholar 

  35. Giehl, R. F. & Lima, J. E. Wiren, N. Localized iron supply triggers lateral root elongation in. Altering AUX1-mediated Auxin Distribution Plant. Cell. 24(1), 33–49 (2012). von.

    Google Scholar 

  36. Nohesara, M., Malekzadeh, E., Motlagh, M. B. & Tatari, A. Effect of nanocellulose-assisted green-synthesized iron nanoparticles and conventional sources of Fe on pot marigold plants symbiotically with arbuscular mycorrhizal fungus (. BMC Plant. Biol. 25(1), 1–20 (2025).

    Google Scholar 

  37. Nechitailo, G., Bogoslovskaya, O., Ol’khovskaya, I. & Glushchenko, N. Influence of iron, zinc, and copper nanoparticles on some growth indices of pepper plants. Nanotechnologies Russ. 13(3), 161–167 (2018).

    Google Scholar 

  38. Khan, M. A. et al. Iron nano modulated growth and biosynthesis of steviol glycosides in Stevia rebaudiana. Plant Cell Tissue Organ Cult. 143(1), 121–130 (2020).

  39. Farhoudi, K. & Asgharian, P. Impacts of glutamic coated nanoparticles of iron oxide on in vitro cultured Valeriana officinalis. Iran J. Chem. Chem. Eng. (IJCCE) Res. Article Vol 43(2) (2024).

  40. Rout, G. R. & Sahoo, S. Role of iron in plant growth and metabolism. Rev. Agric. Sci. 3, 1–24 (2015).

    Google Scholar 

  41. Crichton, R. R., Wilmet, S., Legssyer, R. & Ward, R. J. Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. J. Inorg. Biochem. 91(1), 9–18 (2002).

    Google Scholar 

  42. Snowden, R. & Wheeler, B. Iron toxicity to Fen plant species. J Ecol 35–46 (1993).

  43. Kuzhandaivel Hemalatha, K. H. & Selvaraj Venkatesan, S. V. Impact of iron toxicity on certain enzymes and biochemical parameters of tea. (2011).

  44. Xiao, X. Effects of three graphene-based materials on the growth and photosynthesis of. L Ecotoxicol. Environ. Saf. 234, 113383 (2022). .

    Google Scholar 

  45. Souza, L. R. R., Bernardes, L. E. & Barbetta, M. F. S. & Da Veiga, M. A. M. S. Iron oxide nanoparticle phytotoxicity to the aquatic plant. Effect Reactive Oxygen Species (ROS) Prod. Chlorophyll a/chlorophyll B Ratio Environ. Sci. Pollut Res. 26(23), 24121–24131 (2019).

    Google Scholar 

  46. Hazeem, L. J. Toxicity effect of graphene oxide on growth and photosynthetic pigment of the marine Alga. Sp Dur. Different Growth Stages Environ. Sci. Pollut Res. 24(4), 4144–4152 (2017). .

    Google Scholar 

  47. Afsharypuor, S., Asgary, S. & Lockwood, G. Volatile constituents of. L Ssp Millefolium Iran. Flavour. Fragr. J. 11(5), 265–267 (1996).

    Google Scholar 

  48. Howyzeh, M. S., Aslani, S. & Pooraskari, O. Essential oil profile of an Iranian Yarrow (. J. Essent. Oil-Bear Plants. 22(1), 295–300 (2019).

    Google Scholar 

  49. Asadi, M. Application of graphene oxide nanoparticles for improvement of growth parameters, photosynthetic pigments, and essential oil quality and yield of. Mill. Under green. Manure Incorporation BMC Plant. Biol. 25(1), 1278 (2025). .

    Google Scholar 

  50. Khanizadeh, P., Mumivand, H., Morshedloo, M. R. & Maggi, F. Application of Fe2O3 nanoparticles improves the growth, antioxidant power, flavonoid content, and essential oil yield and composition of. Boiss Front. Plant. Sci. 15, 1475284 (2024).

    Google Scholar 

  51. Ahmed, M. A., Shafiei-Masouleh, S. S., Mohsin, R. M. & Salih, Z. K. Foliar application of iron oxide nanoparticles promotes growth, mineral contents, and medicinal qualities of. L J. Soil. Sci. Plant. Nutr. 23(2), 2610–2624 (2023).

    Google Scholar 

  52. Piesik, D. et al. Synergistic use of iron nanofertilizers and biotic elicitors to induce defensive volatile organic compound emissions from Brassica napus. J Plant. Prot. Res 336–350 (2024).

  53. Mehrabani, L. V., Hassanpouraghdam, M. B., Rasouli, F., Okcu, Z. & MARK, R. A. Foliar application of graphene oxide, nano-Fe, and selenium mitigates salinity depression on. Turk. J. Agric. For. 47(4), 510–528 (2023).

    Google Scholar 

  54. Chowdhury, I., Mansukhani, N. D., Guiney, L. M., Hersam, M. C. & Bouchard, D. Aggregation and stability of reduced graphene oxide: complex roles of divalent cations, pH, and natural organic matter. Environmental Science Technology. 49(18), 10886–10893 (2015).

    Google Scholar 

  55. Iravani, S. Green synthesis of metal nanoparticles using plants. Green. Chem. 13 (10), 2638–2650 (2011).

    Google Scholar 

  56. Mittal, A. K., Chisti, Y. & Banerjee, U. C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 31(2), 346–356 (2013).

    Google Scholar 

  57. Rai, M. & Yadav, A. Plants as potential synthesiser of precious metal nanoparticles: progress and prospects. IET nanobiotechnol. 7(3), 117–124 (2013).

    Google Scholar 

  58. Khan, M. Pulicaria glutinosa plant extract: a green and eco-friendly reducing agent for the Preparation of highly reduced graphene oxide. RSC Adv. 4(46), 24119–24125 (2014).

    Google Scholar 

  59. Alshamsi, H. A., Ali, S. K. & Altaa, S. H. A. in Journal of physics: conference series. 1664(1), 012058 (IOP Publishing).

  60. Saini, R., Mishra, R. K. & Kumar, P. Green synthesis of reduced graphene oxide using the. plant. Extract: Exploring its potential. Methylene Blue Dye Degrad. Antibact. Activity ACS Omega. 9(18), 20304–20321 (2024).

    Google Scholar 

  61. Zhang, H. Y. & Su, W. H. Classification, uptake, translocation, and detection methods of nanoparticles in crop plants: a review. Environ. Sci. Nano. 11(5), 1847–1870 (2024).

    Google Scholar 

  62. Yavas, I. et al. Uptake and transport of nanoparticles in plants. Plant Nanatechnol. Fundamentals Methodologies, 99–121 (2025).

  63. Pokharel, B. R., Sheri, V., Kumar, M., Zhang, Z. & Zhang, B. The update and transport of aluminum nanoparticles in plants and their biochemical and molecular phototoxicity on plant growth and development: a systematic review. Environ. Pollut. 340, 122875 (2024).

    Google Scholar 

  64. Lala, S. Nanoparticles as elicitors and harvesters of economically important secondary metabolites in higher plants: A review. IET nanobiotechnol. 15(1), 28–57 (2021).

    Google Scholar 

  65. Rohela, G. K. Nanoparticles as elicitors and stimulators for plant tissue culture, transgenics, and genome editing: A comprehensive review. Ind. Crops Prod. 222, 120097 (2024). .

    Google Scholar 

  66. Humbal, A. & Pathak, B. Harnessing nanoparticle-mediated elicitation in plant tissue culture: a promising approach for secondary metabolite production. Plant. Cell. Tissue Organ. Cult. 155(2), 385–402 (2023).

    Google Scholar 

Download references