Bridging technical innovation and computational advances in studies of RNA–protein assemblies

bridging-technical-innovation-and-computational-advances-in-studies-of-rna–protein-assemblies
Bridging technical innovation and computational advances in studies of RNA–protein assemblies
  • Hentze, M. W., Castello, A., Schwarzl, T. & Preiss, T. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 19, 327–341 (2018).

    Article  PubMed  Google Scholar 

  • Gebauer, F., Schwarzl, T., Valcárcel, J. & Hentze, M. W. RNA-binding proteins in human genetic disease. Nat. Rev. Genet. 22, 185–198 (2021).

    Article  PubMed  Google Scholar 

  • Buccitelli, C. & Selbach, M. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 21, 630–644 (2020).

    Article  PubMed  Google Scholar 

  • Caudron-Herger, M., Jansen, R. E., Wassmer, E. & Diederichs, S. RBP2GO: a comprehensive pan-species database on RNA-binding proteins, their interactions and functions. Nucleic Acids Res. 49, D425–D436 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wassmer, E., Koppány, G., Hermes, M., Diederichs, S. & Caudron-Herger, M. Refining the pool of RNA-binding domains advances the classification and prediction of RNA-binding proteins. Nucleic Acids Res. 52, 7504–7522 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerstberger, S., Hafner, M. & Tuschl, T. A census of human RNA-binding proteins. Nat. Rev. Genet. 15, 829–845 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Corley, M., Burns, M. C. & Yeo, G. W. How RNA-binding proteins interact with RNA: molecules and mechanisms. Mol. Cell 78, 9–29 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hafner, M. et al. CLIP and complementary methods. Nat. Rev. Methods Primers 1, 20 (2021).

    Article  Google Scholar 

  • Ramanathan, M., Porter, D. F. & Khavari, P. A. Methods to study RNA–protein interactions. Nat. Methods 16, 225–234 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ule, J. et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212–1215 (2003).

    Article  PubMed  Google Scholar 

  • Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sugimoto, Y. et al. Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions. Genome Biol. 13, R67 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chakrabarti, A. M., Haberman, N., Praznik, A., Luscombe, N. M. & Ule, J. Data science issues in studying protein–RNA interactions with CLIP technologies. Annu. Rev. Biomed. Data Sci. 1, 235–261 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin, C. & Miles, W. O. Beyond CLIP: advances and opportunities to measure RBP–RNA and RNA–RNA interactions. Nucleic Acids Res. 47, 5490–5501 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Vieira-Vieira, C. H. & Selbach, M. Opportunities and challenges in global quantification of RNA-protein interaction via UV cross-linking. Front. Mol. Biosci. 8, 669939 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitchell, S. F. & Parker, R. Principles and properties of eukaryotic mRNPs. Mol. Cell 54, 547–558 (2014).

    Article  PubMed  Google Scholar 

  • Hirose, T., Ninomiya, K., Nakagawa, S. & Yamazaki, T. A guide to membraneless organelles and their various roles in gene regulation. Nat. Rev. Mol. Cell Biol. 24, 288–304 (2023).

    Article  PubMed  Google Scholar 

  • Håkansson, K. & Wigley, D. B. Structure of a complex between a cap analogue and mRNA guanylyl transferase demonstrates the structural chemistry of RNA capping. Proc. Natl Acad. Sci. USA 95, 1505–1510 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Wang, Q., Xu, Y. & Li, Z. Structures of co-transcriptional RNA capping enzymes on paused transcription complex. Nat. Commun. 15, 4622 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Izaurralde, E. et al. A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell 78, 657–668 (1994).

    Article  PubMed  Google Scholar 

  • Hamm, J. & Mattaj, I. W. Monomethylated cap structures facilitate RNA export from the nucleus. Cell 63, 109–118 (1990).

    Article  PubMed  Google Scholar 

  • Spirin, A. S. Messenger ribonucleoproteins (informosomes) and RNA-binding proteins. Mol. Biol. Rep. 5, 53–57 (1979).

    Article  PubMed  Google Scholar 

  • McKnight, S. L. & Miller, O. L. Ultrastructural patterns of RNA synthesis during early embryogenesis of Drosophila melanogaster. Cell 8, 305–319 (1976).

    Article  PubMed  Google Scholar 

  • Conway, G., Wooley, J., Bibring, T. & LeStourgeon, W. M. Ribonucleoproteins package 700 nucleotides of pre-mRNA into a repeating array of regular particles. Mol. Cell. Biol. 8, 2884–2895 (1988).

    PubMed  PubMed Central  Google Scholar 

  • Piñol-Roma, S., Choi, Y. D., Matunis, M. J. & Dreyfuss, G. Immunopurification of heterogeneous nuclear ribonucleoprotein particles reveals an assortment of RNA-binding proteins. Genes Dev. 2, 215–227 (1988).

    Article  PubMed  Google Scholar 

  • König, J. et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 17, 909–915 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Domanski, M. et al. 40S hnRNP particles are a novel class of nuclear biomolecular condensates. Nucleic Acids Res. 50, 6300–6312 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogalska, M. E., Vivori, C. & Valcárcel, J. Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects. Nat. Rev. Genet. 24, 251–269 (2023).

    Article  PubMed  Google Scholar 

  • Akinyi, M. V. & Frilander, M. J. At the intersection of major and minor spliceosomes: crosstalk mechanisms and their impact on gene expression. Front. Genet. 12, 700744 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Enders, M., Neumann, P., Dickmanns, A. & Ficner, R. Structure and function of spliceosomal DEAH-box ATPases. Biol. Chem. 404, 851–866 (2023).

    Article  PubMed  Google Scholar 

  • Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008).

    Article  PubMed  Google Scholar 

  • Brody, Y. et al. The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing. PLoS Biol. 9, e1000573 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandit, S., Wang, D. & Fu, X.-D. Functional integration of transcriptional and RNA processing machineries. Curr. Opin. Cell Biol. 20, 260–265 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bentley, D. L. Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr. Opin. Cell Biol. 17, 251–256 (2005).

    Article  PubMed  Google Scholar 

  • Buratowski, S. Connections between mRNA 3′ end processing and transcription termination. Curr. Opin. Cell Biol. 17, 257–261 (2005).

    Article  PubMed  Google Scholar 

  • Luo, M. L. et al. Pre-mRNA splicing and mRNA export linked by direct interactions between UAP56 and Aly. Nature 413, 644–647 (2001).

    Article  PubMed  Google Scholar 

  • Giudice, J. & Jiang, H. Splicing regulation through biomolecular condensates and membraneless organelles. Nat. Rev. Mol. Cell Biol. 25, 683–700 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Proudfoot, N. J. Ending the message: poly(A) signals then and now. Genes Dev. 25, 1770–1782 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian, B., Hu, J., Zhang, H. & Lutz, C. S. A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res. 33, 201–212 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  • Turner, R. E., Pattison, A. D. & Beilharz, T. H. Alternative polyadenylation in the regulation and dysregulation of gene expression. Semin. Cell Dev. Biol. 75, 61–69 (2018).

    Article  PubMed  Google Scholar 

  • Shi, Y. et al. Molecular architecture of the human pre-mRNA 3′ processing complex. Mol. Cell 33, 365–376 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Turner, R. E. et al. Requirement for cleavage factor IIm in the control of alternative polyadenylation in breast cancer cells. RNA 26, 969–981 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Passmore, L. A. & Coller, J. Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression. Nat. Rev. Mol. Cell Biol. 23, 93–106 (2022).

    Article  PubMed  Google Scholar 

  • Mabin, J. W. et al. The exon junction complex undergoes a compositional switch that alters mRNP structure and nonsense-mediated mRNA decay activity. Cell Rep. 25, 2431–2446.e7 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Hir, H., Saulière, J. & Wang, Z. The exon junction complex as a node of post-transcriptional networks. Nat. Rev. Mol. Cell Biol. 17, 41–54 (2016).

    Article  PubMed  Google Scholar 

  • Le Hir, H., Izaurralde, E., Maquat, L. E. & Moore, M. J. The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon–exon junctions. EMBO J. 19, 6860–6869 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ballut, L. et al. The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nat. Struct. Mol. Biol. 12, 861–869 (2005).

    Article  PubMed  Google Scholar 

  • Boehm, V. & Gehring, N. H. Exon junction complexes: supervising the gene expression assembly line. Trends Genet. 32, 724–735 (2016).

    Article  PubMed  Google Scholar 

  • Xie, Y. et al. Cryo-EM structure of the yeast TREX complex and coordination with the SR-like protein Gbp2. eLife 10, e65699 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Strässer, K. et al. TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417, 304–308 (2002).

    Article  PubMed  Google Scholar 

  • Viphakone, N. et al. TREX exposes the RNA-binding domain of Nxf1 to enable mRNA export. Nat. Commun. 3, 1006 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Pacheco-Fiallos, B. et al. mRNA recognition and packaging by the human transcription–export complex. Nature 616, 828–835 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • He, P. C. et al. Exon architecture controls mRNA m6A suppression and gene expression. Science 379, 677–682 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lejeune, F., Ishigaki, Y., Li, X. & Maquat, L. E. The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling. EMBO J. 21, 3536–3545 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gehring, N. H., Lamprinaki, S., Kulozik, A. E. & Hentze, M. W. Disassembly of exon junction complexes by PYM. Cell 137, 536–548 (2009).

    Article  PubMed  Google Scholar 

  • Adivarahan, S. et al. Spatial organization of single mRNPs at different stages of the gene expression pathway. Mol. Cell 72, 727–738.e5 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bensaude, O., Barbosa, I., Morillo, L., Dikstein, R. & Le Hir, H. Exon-junction complex association with stalled ribosomes and slow translation-independent disassembly. Nat. Commun. 15, 4209 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sonenberg, N. & Hinnebusch, A. G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731–745 (2009).

    Article  PubMed  Google Scholar 

  • Bhat, M. et al. Targeting the translation machinery in cancer. Nat. Rev. Drug Discov. 14, 261–278 (2015).

    Article  PubMed  Google Scholar 

  • Marcotrigiano, J., Gingras, A. C., Sonenberg, N. & Burley, S. K. Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol. Cell 3, 707–716 (1999).

    Article  PubMed  Google Scholar 

  • Dever, T. E., Dinman, J. D. & Green, R. Translation elongation and recoding in eukaryotes. Cold Spring Harb. Perspect. Biol. 10, a032649 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoenberg, D. R. & Maquat, L. E. Regulation of cytoplasmic mRNA decay. Nat. Rev. Genet. 13, 246–259 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller-McNicoll, M. & Neugebauer, K. M. How cells get the message: dynamic assembly and function of mRNA-protein complexes. Nat. Rev. Genet. 14, 275–287 (2013).

    Article  PubMed  Google Scholar 

  • Tucker, M. et al. The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104, 377–386 (2001).

    Article  PubMed  Google Scholar 

  • Jonas, S. et al. An asymmetric PAN3 dimer recruits a single PAN2 exonuclease to mediate mRNA deadenylation and decay. Nat. Struct. Mol. Biol. 21, 599–608 (2014).

    Article  PubMed  Google Scholar 

  • Wang, Z., Jiao, X., Carr-Schmid, A. & Kiledjian, M. The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc. Natl Acad. Sci. USA 99, 12663–12668 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang, C.-T., Bercovich, N., Loh, B., Jonas, S. & Izaurralde, E. The activation of the decapping enzyme DCP2 by DCP1 occurs on the EDC4 scaffold and involves a conserved loop in DCP1. Nucleic Acids Res. 42, 5217–5233 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Brothers, W. R., Ali, F., Kajjo, S. & Fabian, M. R. The EDC4-XRN1 interaction controls P-body dynamics to link mRNA decapping with decay. EMBO J. 42, e113933 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Halbach, F., Reichelt, P., Rode, M. & Conti, E. The yeast ski complex: crystal structure and RNA channeling to the exosome complex. Cell 154, 814–826 (2013).

    Article  PubMed  Google Scholar 

  • Weick, E.-M. & Lima, C. D. RNA helicases are hubs that orchestrate exosome-dependent 3′–5′ decay. Curr. Opin. Struct. Biol. 67, 86–94 (2021).

    Article  PubMed  Google Scholar 

  • Dehecq, M. et al. Nonsense-mediated mRNA decay involves two distinct Upf1-bound complexes. EMBO J. 37, e99278 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Loh, B., Jonas, S. & Izaurralde, E. The SMG5–SMG7 heterodimer directly recruits the CCR4–NOT deadenylase complex to mRNAs containing nonsense codons via interaction with POP2. Genes Dev. 27, 2125–2138 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Boehm, V. et al. SMG5-SMG7 authorize nonsense-mediated mRNA decay by enabling SMG6 endonucleolytic activity. Nat. Commun. 12, 3965 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Dostie, J. & Dreyfuss, G. Translation is required to remove Y14 from mRNAs in the cytoplasm. Curr. Biol. 12, 1060–1067 (2002).

    Article  PubMed  Google Scholar 

  • Chamieh, H., Ballut, L., Bonneau, F. & Le Hir, H. NMD factors UPF2 and UPF3 bridge UPF1 to the exon junction complex and stimulate its RNA helicase activity. Nat. Struct. Mol. Biol. 15, 85–93 (2008).

    Article  PubMed  Google Scholar 

  • Kim, V. N., Kataoka, N. & Dreyfuss, G. Role of the nonsense-mediated decay factor hUpf3 in the splicing-dependent exon-exon junction complex. Science 293, 1832–1836 (2001).

    Article  PubMed  Google Scholar 

  • Monaghan, L., Longman, D. & Cáceres, J. F. Translation-coupled mRNA quality control mechanisms. EMBO J. 42, e114378 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Presnyak, V. et al. Codon optimality is a major determinant of mRNA stability. Cell 160, 1111–1124 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Doma, M. K. & Parker, R. Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 440, 561–564 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  • Frischmeyer, P. A. et al. An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295, 2258–2261 (2002).

    Article  PubMed  Google Scholar 

  • Damianov, A. et al. Rbfox proteins regulate splicing as part of a large multiprotein complex LASR. Cell 165, 606–619 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Peyda, P., Lin, C.-H., Onwuzurike, K. & Black, D. L. The Rbfox1/LASR complex controls alternative pre-mRNA splicing by recognition of multipart RNA regulatory modules. Genes Dev. 39, 364–383 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Keenan, R. J., Freymann, D. M., Walter, P. & Stroud, R. M. Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell 94, 181–191 (1998).

    Article  PubMed  Google Scholar 

  • Cusack, S. RNA–protein complexes. Curr. Opin. Struct. Biol. 9, 66–73 (1999).

    Article  PubMed  Google Scholar 

  • Bousard, A. et al. The role of Xist-mediated Polycomb recruitment in the initiation of X-chromosome inactivation. EMBO Rep. 20, e48019 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu, Z. et al. Structural modularity of the XIST ribonucleoprotein complex. Nat. Commun. 11, 6163 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Protter, D. S. W. et al. Intrinsically disordered regions can contribute promiscuous interactions to RNP granule assembly. Cell Rep. 22, 1401–1412 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao, R. et al. Pervasive chromatin-RNA binding protein interactions enable RNA-based regulation of transcription. Cell 178, 107–121.e18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hiragami-Hamada, K., Tani, N. & Nakayama J.-I. in RNA–Chromatin Interactions. Methods in Molecular Biology Vol. 2161 (ed. Ørom, U. A. V.) 89–99 (Humana, 2020).

  • Rajagopal, V. et al. Proteome-wide identification of RNA-dependent proteins in lung cancer cells. Cancers 14, 6109 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajagopal, V. et al. An atlas of RNA-dependent proteins in cell division reveals the riboregulation of mitotic protein-protein interactions. Nat. Commun. 16, 2325 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hentze, M. W., Sommerkamp, P., Ravi, V. & Gebauer, F. Rethinking RNA-binding proteins: riboregulation challenges prevailing views. Cell 188, 4811–4827 (2025).

    Article  PubMed  Google Scholar 

  • Huppertz, I. et al. Riboregulation of enolase 1 activity controls glycolysis and embryonic stem cell differentiation. Mol. Cell 82, 2666–2680.e11 (2022).

    Article  PubMed  Google Scholar 

  • Spizzichino, S. et al. Structure-based mechanism of riboregulation of the metabolic enzyme SHMT1. Mol. Cell 84, 2682–2697.e6 (2024).

    Article  PubMed  Google Scholar 

  • Castello, A. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149, 1393–1406 (2012).

    Article  PubMed  Google Scholar 

  • Mahmoudi, S. et al. WRAP53 is essential for Cajal body formation and for targeting the survival of motor neuron complex to Cajal bodies. PLoS Biol. 8, e1000521 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Enwerem, I. I. et al. Coilin association with Box C/D scaRNA suggests a direct role for the Cajal body marker protein in scaRNP biogenesis. Biol. Open 3, 240–249 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sawyer, I. A., Sturgill, D., Sung, M.-H., Hager, G. L. & Dundr, M. Cajal body function in genome organization and transcriptome diversity. BioEssays 38, 1197–1208 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lafontaine, D. L. J., Riback, J. A., Bascetin, R. & Brangwynne, C. P. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 22, 165–182 (2021).

    Article  PubMed  Google Scholar 

  • Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Iarovaia, O. V. et al. Nucleolus: a central hub for nuclear functions. Trends Cell Biol. 29, 647–659 (2019).

    Article  PubMed  Google Scholar 

  • Hein, N., Hannan, K. M., George, A. J., Sanij, E. & Hannan, R. D. The nucleolus: an emerging target for cancer therapy. Trends Mol. Med. 19, 643–654 (2013).

    Article  PubMed  Google Scholar 

  • Hirose, T. et al. NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Mol. Biol. Cell 25, 169–183 (2014).

    Article  PubMed  Google Scholar 

  • Nakagawa, S., Yamazaki, T. & Hirose, T. Molecular dissection of nuclear paraspeckles: towards understanding the emerging world of the RNP milieu. Open Biol. 8, 180150 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamazaki, T. et al. Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation. Mol. Cell 70, 1038–1053.e7 (2018).

    Article  PubMed  Google Scholar 

  • An, H., Tan, J. T. & Shelkovnikova, T. A. Stress granules regulate stress-induced paraspeckle assembly. J. Cell Biol. 218, 4127–4140 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain, S. et al. ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164, 487–498 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Protter, D. S. W. & Parker, R. Principles and properties of stress granules. Trends Cell Biol. 26, 668–679 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheth, U. & Parker, R. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300, 805–808 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  • Aizer, A. et al. Quantifying mRNA targeting to P-bodies in living human cells reveals their dual role in mRNA decay and storage. J. Cell Sci. 127, 4443–4456 (2014).

    PubMed  Google Scholar 

  • Kedersha, N. et al. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J. Cell Biol. 169, 871–884 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  • Decker, C. J. & Parker, R. P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb. Perspect. Biol. 4, a012286 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Youn, J.-Y. et al. Properties of stress granule and P-body proteomes. Mol. Cell 76, 286–294 (2019).

    Article  PubMed  Google Scholar 

  • Vorobeva, M. A., Skvortsov, D. A. & Pervouchine, D. D. Cooperation and competition of RNA secondary structure and RNA–protein interactions in the regulation of alternative splicing. Acta Naturae 15, 23–31 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Dassi, E. Handshakes and fights: the regulatory interplay of RNA-binding proteins. Front. Mol. Biosci. 4, 67 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nag, S., Goswami, B., Das Mandal, S. & Ray, P. S. Cooperation and competition by RNA-binding proteins in cancer. Semin. Cancer Biol. 86, 286–297 (2022).

    Article  PubMed  Google Scholar 

  • Wang, H., Ding, N., Guo, J., Xia, J. & Ruan, Y. Dysregulation of TTP and HuR plays an important role in cancers. Tumor Biol. 37, 14451–14461 (2016).

    Article  Google Scholar 

  • Bhandare, S., Goldberg, D. S. & Dowell, R. Discriminating between HuR and TTP binding sites using the k-spectrum kernel method. PLoS One 12, e0174052 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • von Hacht, A. et al. Identification and characterization of RNA guanine-quadruplex binding proteins. Nucleic Acids Res. 42, 6630–6644 (2014).

    Article  Google Scholar 

  • Adlhart, M., Hoffmann, D., Polyansky, A. A. & Žagrović, B. Coding relationship links RNA G-quadruplexes and protein RGG motifs in RNA-binding protein autoregulation. Proc. Natl Acad. Sci. USA 122, e2413721122 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Luige, J., Armaos, A., Tartaglia, G. G. & Ørom, U. A. V. Predicting nuclear G-quadruplex RNA-binding proteins with roles in transcription and phase separation. Nat. Commun. 15, 2585 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye, X. et al. Two distinct binding modes provide the RNA-binding protein RbFox with extraordinary sequence specificity. Nat. Commun. 14, 701 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain, N., Lin, H.-C., Morgan, C. E., Harris, M. E. & Tolbert, B. S. Rules of RNA specificity of hnRNP A1 revealed by global and quantitative analysis of its affinity distribution. Proc. Natl Acad. Sci. USA 114, 2206–2211 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Rivas, J., Marsili, S., Juan, D. & Valencia, A. Conservation of coevolving protein interfaces bridges prokaryote–eukaryote homologies in the twilight zone. Proc. Natl Acad. Sci. USA 113, 15018–15023 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris, S. E. et al. Understanding species-specific and conserved RNA-protein interactions in vivo and in vitro. Nat. Commun. 15, 8400 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Teppa, E., Zea, D. J. & Marino-Buslje, C. Protein–protein interactions leave evolutionary footprints: High molecular coevolution at the core of interfaces. Protein Sci. 26, 2438–2444 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilkinson, M. E. et al. Postcatalytic spliceosome structure reveals mechanism of 3′-splice site selection. Science 358, 1283–1288 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Beusch, I. & Madhani, H. D. Understanding the dynamic design of the spliceosome. Trends Biochem. Sci. 49, 583–595 (2024).

    Article  PubMed  Google Scholar 

  • Madhani, H. D. & Guthrie, C. A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. Cell 71, 803–817 (1992).

    Article  PubMed  Google Scholar 

  • Fica, S. M. et al. RNA catalyses nuclear pre-mRNA splicing. Nature 503, 229–234 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hainzl, T., Huang, S. & Sauer-Eriksson, A. E. Structural insights into SRP RNA: an induced fit mechanism for SRP assembly. RNA 11, 1043–1050 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin, Y.-H. & Bundschuh, R. RNA structure generates natural cooperativity between single-stranded RNA binding proteins targeting 5′ and 3′UTRs. Nucleic Acids Res. 43, 1160–1169 (2015).

    Article  PubMed  Google Scholar 

  • Rouskin, S., Zubradt, M., Washietl, S., Kellis, M. & Weissman, J. S. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505, 701–705 (2014).

    Article  PubMed  Google Scholar 

  • Lewis, C. J. T., Pan, T. & Kalsotra, A. RNA modifications and structures cooperate to guide RNA–protein interactions. Nat. Rev. Mol. Cell Biol. 18, 202–210 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Poudyal, R. R., Sieg, J. P., Portz, B., Keating, C. D. & Bevilacqua, P. C. RNA sequence and structure control assembly and function of RNA condensates. RNA 27, 1589–1601 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, X. & He, C. Dynamic RNA modifications in posttranscriptional regulation. Mol. Cell 56, 5–12 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallardo-Dodd, C. J. & Kutter, C. The regulatory landscape of interacting RNA and protein pools in cellular homeostasis and cancer. Hum. Genomics 18, 109 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, K. I. et al. Regulation of co-transcriptional pre-mRNA splicing by m6A through the low-complexity protein hnRNPG. Mol. Cell 76, 70–81.e9 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, N. et al. N6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions. Nature 518, 560–564 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Du, H. et al. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4–NOT deadenylase complex. Nat. Commun. 7, 12626 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Karijolich, J. & Yu, Y.-T. Spliceosomal snRNA modifications and their function. RNA Biol. 7, 192–204 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartz, S. et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159, 148–162 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Karijolich, J. & Yu, Y.-T. Converting nonsense codons into sense codons by targeted pseudouridylation. Nature 474, 395–398 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomikawa, C. Pseudouridine modifications in transfer RNA and tRNA pseudouridine synthases. J. Mol. Biol. 437, 169183 (2025).

    Article  PubMed  Google Scholar 

  • Borchardt, E. K., Martinez, N. M. & Gilbert, W. V. Regulation and function of RNA pseudouridylation in human cells. Annu. Rev. Genet. 54, 309–336 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, Y., Dunker, W., Yu, Y.-T. & Karijolich, J. The role of noncoding RNA pseudouridylation in nuclear gene expression events. Front. Bioeng. Biotechnol. 6, 8 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Carlile, T. M. et al. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515, 143–146 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, Y. & Fang, J. RNA 5-methylcytosine modification and its emerging role as an epitranscriptomic mark. RNA Biol. 18, 117–127 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Squires, J. E. et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res. 40, 5023–5033 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, X. et al. 5-methylcytosine promotes mRNA export — NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res. 27, 606–625 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, Y. et al. mRNA m5C controls adipogenesis by promoting CDKN1A mRNA export and translation. RNA Biol. 18, 711–721 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lunde, B. M., Moore, C. & Varani, G. RNA-binding proteins: modular design for efficient function. Nat. Rev. Mol. Cell Biol. 8, 479–490 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  • Agarwal, A. & Bahadur, R. P. Modular architecture and functional annotation of human RNA-binding proteins containing RNA recognition motif. Biochimie 209, 116–130 (2023).

    Article  PubMed  Google Scholar 

  • Ramos, A. et al. RNA recognition by a Staufen double-stranded RNA-binding domain. EMBO J. 19, 997–1009 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  • Dejgaard, K. & Leffers, H. Characterisation of the nucleic-acid-binding activity of KH domains. Different properties of different domains. Eur. J. Biochem. 241, 425–431 (1996).

    Article  PubMed  Google Scholar 

  • Linder, P. & Jankowsky, E. From unwinding to clamping — the DEAD box RNA helicase family. Nat. Rev. Mol. Cell Biol. 12, 505–516 (2011).

    Article  PubMed  Google Scholar 

  • Jarmoskaite, I. & Russell, R. RNA helicase proteins as chaperones and remodelers. Annu. Rev. Biochem. 83, 697–725 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ottoz, D. S. M. & Berchowitz, L. E. The role of disorder in RNA binding affinity and specificity. Open Biol. 10, 200328 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699.e16 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Treeck, B. & Parker, R. Emerging roles for intermolecular RNA-RNA interactions in RNP assemblies. Cell 174, 791–802 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeke, A. et al. Deep structural insights into RNA-binding disordered protein regions. Wiley Interdiscip. Rev. RNA 13, e1714 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Niedner-Boblenz, A. et al. Intrinsically disordered RNA-binding motifs cooperate to catalyze RNA folding and drive phase separation. Nucleic Acids Res. 52, 14205–14228 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nott, T. J., Craggs, T. D. & Baldwin, A. J. Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters. Nat. Chem. 8, 569–575 (2016).

    Article  PubMed  Google Scholar 

  • Naganuma, T. et al. Alternative 3′-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. EMBO J. 31, 4020–4034 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Järvelin, A. I., Noerenberg, M., Davis, I. & Castello, A. The new (dis)order in RNA regulation. Cell Commun. Signal. 14, 9 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganser, L. R. et al. The roles of FUS-RNA binding domain and low complexity domain in RNA-dependent phase separation. Structure 32, 177–187.e5 (2024).

    Article  PubMed  Google Scholar 

  • Hanson, K. A., Kim, S. H. & Tibbetts, R. S. RNA-binding proteins in neurodegenerative disease: TDP-43 and beyond. Wiley Interdiscip. Rev. RNA 3, 265–285 (2012).

    Article  PubMed  Google Scholar 

  • Tsang, B., Pritišanac, I., Scherer, S. W., Moses, A. M. & Forman-Kay, J. D. Phase separation as a missing mechanism for interpretation of disease mutations. Cell 183, 1742–1756 (2020).

    Article  PubMed  Google Scholar 

  • Mensah, M. A. et al. Aberrant phase separation and nucleolar dysfunction in rare genetic diseases. Nature 614, 564–571 (2023).

    PubMed  PubMed Central  Google Scholar 

  • Lee, J. M., Hammarén, H. M., Savitski, M. M. & Baek, S. H. Control of protein stability by post-translational modifications. Nat. Commun. 14, 201 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sternburg, E. L., Gruijs da Silva, L. A. & Dormann, D. Post-translational modifications on RNA-binding proteins: accelerators, brakes, or passengers in neurodegeneration? Trends Biochem. Sci. 47, 6–22 (2022).

    Article  PubMed  Google Scholar 

  • England, W. E. et al. An atlas of posttranslational modifications on RNA binding proteins. Nucleic Acids Res. 50, 4329–4339 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Howard, J. M. & Sanford, J. R. The RNAissance family: SR proteins as multifaceted regulators of gene expression. Wiley Interdiscip. Rev. RNA 6, 93–110 (2015).

    Article  PubMed  Google Scholar 

  • Qamar, S. et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions. Cell 173, 720–734.e15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, W.-J. et al. Profiling PRMT methylome reveals roles of hnRNPA1 arginine methylation in RNA splicing and cell growth. Nat. Commun. 12, 1946 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryan, V. H. et al. Mechanistic view of hnRNPA2 low-complexity domain structure, interactions, and phase separation altered by mutation and arginine methylation. Mol. Cell 69, 465–479.e7 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hofweber, M. & Dormann, D. Friend or foe—post-translational modifications as regulators of phase separation and RNP granule dynamics. J. Biol. Chem. 294, 7137–7150 (2019).

    Article  PubMed  Google Scholar 

  • Gwon, Y. et al. Ubiquitination of G3BP1 mediates stress granule disassembly in a context-specific manner. Science 372, eabf6548 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Z., Zhang, C., Fan, C. & Liu, Y. Post-translational modifications in stress granule and their implications in neurodegenerative diseases. Biochim. Biophys. Acta Gene Regul. Mech. 1866, 194989 (2023).

    Article  PubMed  Google Scholar 

  • Velázquez-Cruz, A., Baños-Jaime, B., Díaz-Quintana, A., De la Rosa, M. A. & Díaz-Moreno, I. Post-translational control of RNA-binding proteins and disease-related dysregulation. Front. Mol. Biosci. 8, 658852 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Miao, W., Porter, D. F., Lopez-Pajares, V. & Khavari, P. A. Regulation of RNA-binding proteins by small biomolecules. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-025-00914-4 (2025).

    Article  PubMed  Google Scholar 

  • Miao, W. et al. Glucose dissociates DDX21 dimers to regulate mRNA splicing and tissue differentiation. Cell 186, 80–97.e26 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Miao, W. et al. Glucose binds and activates NSUN2 to promote translation and epidermal differentiation. Nucleic Acids Res. 52, 13577–13593 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, T. et al. NSUN2 is a glucose sensor suppressing cGAS/STING to maintain tumorigenesis and immunotherapy resistance. Cell Metab. 35, 1782–1798.e8 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sahadevan, S. et al. htseq-clip: a toolset for the preprocessing of eCLIP/iCLIP datasets. Bioinformatics 39, btac747 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zarnegar, B. J. et al. irCLIP platform for efficient characterization of protein–RNA interactions. Nat. Methods 13, 489–492 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker, M., Khosravi, R. & Salton, M. in RNA-Protein Complexes and Interactions. Methods in Molecular Biology Vol. 2666 (ed. Lin, R. J.) 107–114 (Humana, 2023).

  • Zhao, J. et al. Genome-wide identification of Polycomb-associated RNAs by RIP-seq. Mol. Cell 40, 939–953 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gavin, A.-C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    Article  PubMed  Google Scholar 

  • Street, L. A. et al. Large-scale map of RNA-binding protein interactomes across the mRNA life cycle. Mol. Cell 84, 3790–3809.e8 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Steinmetz, B., Smok, I., Bikaki, M. & Leitner, A. Protein–RNA interactions: from mass spectrometry to drug discovery. Essays Biochem. 67, 175–186 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kramer, K. et al. Photo-cross-linking and high-resolution mass spectrometry for assignment of RNA-binding sites in RNA-binding proteins. Nat. Methods 11, 1064–1070 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Giambruno, R. & Nicassio, F. Proximity-dependent biotinylation technologies for mapping RNA-protein interactions in live cells. Front. Mol. Biosci. 9, 1062448 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu, M. & Wei, W. Proximity labeling to detect RNA–protein interactions in live cells. FEBS Open Bio 9, 1860–1868 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bai, X., McMullan, G. & Scheres, S. H. W. How cryo-EM is revolutionizing structural biology. Trends Biochem. Sci. 40, 49–57 (2015).

    Article  PubMed  Google Scholar 

  • Fica, S. M. & Nagai, K. Cryo-electron microscopy snapshots of the spliceosome: structural insights into a dynamic ribonucleoprotein machine. Nat. Struct. Mol. Biol. 24, 791–799 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng, C., Jian, Y., Vosoughi, S., Zeng, C. & Zhao, Y. Evaluating native-like structures of RNA-protein complexes through the deep learning method. Nat. Commun. 14, 1060 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson, R. W., Smathers, C. M. & Robart, A. R. General strategies for RNA X-ray crystallography. Molecules 28, 2111 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Grünewald, K. et al. Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science 302, 1396–1398 (2003).

    Article  PubMed  Google Scholar 

  • Bäuerlein, F. J. B. & Baumeister, W. Towards visual proteomics at high resolution. J. Mol. Biol. 433, 167187 (2021).

    Article  PubMed  Google Scholar 

  • Nogales, E., Louder, R. K. & He, Y. Cryo-EM in the study of challenging systems: the human transcription pre-initiation complex. Curr. Opin. Struct. Biol. 40, 120–127 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tacheny, A., Dieu, M., Arnould, T. & Renard, P. Mass spectrometry-based identification of proteins interacting with nucleic acids. J. Proteom. 94, 89–109 (2013).

    Article  Google Scholar 

  • Gräwe, C., Stelloo, S., van Hout, F. A. H. & Vermeulen, M. RNA-centric methods: toward the interactome of specific RNA transcripts. Trends Biotechnol. 39, 890–900 (2021).

    Article  PubMed  Google Scholar 

  • Siprashvili, Z. et al. The noncoding RNAs SNORD50A and SNORD50B bind K-Ras and are recurrently deleted in human cancer. Nat. Genet. 48, 53–58 (2016).

    Article  PubMed  Google Scholar 

  • Kretz, M. et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493, 231–235 (2013).

    Article  PubMed  Google Scholar 

  • West, J. A. et al. The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol. Cell 55, 791–802 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chu, C. et al. Systematic discovery of Xist RNA binding proteins. Cell 161, 404–416 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • McHugh, C. A. et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521, 232–236 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yap, K., Chung, T. H. & Makeyev, E. V. Hybridization-proximity labeling reveals spatially ordered interactions of nuclear RNA compartments. Mol. Cell 82, 463–478.e11 (2022).

    Article  PubMed  Google Scholar 

  • Tsue, A. F. et al. Multiomic characterization of RNA microenvironments by oligonucleotide-mediated proximity-interactome mapping. Nat. Methods 21, 2058–2071 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • da Rocha, S. T. & Heard, E. Novel players in X inactivation: insights into Xist-mediated gene silencing and chromosome conformation. Nat. Struct. Mol. Biol. 24, 197–204 (2017).

    Article  PubMed  Google Scholar 

  • Fanucchi, S. et al. Immune genes are primed for robust transcription by proximal long noncoding RNAs located in nuclear compartments. Nat. Genet. 51, 138–150 (2019).

    Article  PubMed  Google Scholar 

  • Ramanathan, M. et al. RNA–protein interaction detection in living cells. Nat. Methods 15, 207–212 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoon, J.-H., Srikantan, S. & Gorospe, M. MS2-TRAP (MS2-tagged RNA affinity purification): tagging RNA to identify associated miRNAs. Methods 58, 81–87 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, S. et al. Identification of lncRNA MEG3 binding protein using MS2-tagged RNA affinity purification and mass spectrometry. Appl. Biochem. Biotechnol. 176, 1834–1845 (2015).

    Article  PubMed  Google Scholar 

  • Tsai, B. P., Wang, X., Huang, L. & Waterman, M. L. Quantitative profiling of in vivo-assembled RNA-protein complexes using a novel integrated proteomic approach. Mol. Cell. Proteom. 10, M110.007385 (2011).

    Article  Google Scholar 

  • Yoon, J.-H. & Gorospe, M. in RNA-Protein Complexes and Interactions. Methods in Molecular Biology Vol. 1421 (ed. Lin, R. J.) 15–22 (Humana, 2016).

  • Lu, M., Wang, Z., Wang, Y. & Ren, B. CRISPR-guided proximity labeling of RNA–protein interactions. Genes 13, 1549 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao, H. et al. Progress of CRISPR-Cas13 mediated live-cell RNA imaging and detection of RNA-protein interactions. Front. Cell Dev. Biol. 10, 866820 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Núñez-Álvarez, Y. et al. A CRISPR-dCas13 RNA-editing tool to study alternative splicing. Nucleic Acids Res. 52, 11926–11939 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Apostolopoulos, A. et al. dCas13-mediated translational repression for accurate gene silencing in mammalian cells. Nat. Commun. 15, 2205 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z. et al. Capturing RNA–protein interaction via CRUIS. Nucleic Acids Res. 48, e52 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi, W. et al. CRISPR-assisted detection of RNA–protein interactions in living cells. Nat. Methods 17, 685–688 (2020).

    Article  PubMed  Google Scholar 

  • Baltz, A. G. et al. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol. Cell 46, 674–690 (2012).

    Article  PubMed  Google Scholar 

  • Perez-Perri, J. I. et al. Discovery of RNA-binding proteins and characterization of their dynamic responses by enhanced RNA interactome capture. Nat. Commun. 9, 4408 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Perez-Perri, J. I. et al. The RNA-binding protein landscapes differ between mammalian organs and cultured cells. Nat. Commun. 14, 2074 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Castello, A. et al. Comprehensive identification of RNA-binding domains in human cells. Mol. Cell 63, 696–710 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mullari, M., Lyon, D., Jensen, L. J. & Nielsen, M. L. Specifying RNA-binding regions in proteins by peptide cross-linking and affinity purification. J. Proteome Res. 16, 2762–2772 (2017).

    Article  PubMed  Google Scholar 

  • Bao, X. et al. Capturing the interactome of newly transcribed RNA. Nat. Methods 15, 213–220 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang, R., Han, M., Meng, L. & Chen, X. Transcriptome-wide discovery of coding and noncoding RNA-binding proteins. Proc. Natl Acad. Sci. USA 115, E3879–E3887 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Shchepachev, V. et al. Defining the RNA interactome by total RNA-associated protein purification. Mol. Syst. Biol. 15, e8689 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Queiroz, R. M. L. et al. Comprehensive identification of RNA–protein interactions in any organism using orthogonal organic phase separation (OOPS). Nat. Biotechnol. 37, 169–178 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Urdaneta, E. C. & Beckmann, B. M. Fast and unbiased purification of RNA-protein complexes after UV cross-linking. Methods 178, 72–82 (2020).

    Article  PubMed  Google Scholar 

  • Trendel, J. et al. The human RNA-binding proteome and its dynamics during translational arrest. Cell 176, 391–403.e19 (2019).

    Article  PubMed  Google Scholar 

  • He, C. et al. High-resolution mapping of RNA-binding regions in the nuclear proteome of embryonic stem cells. Mol. Cell 64, 416–430 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Panhale, A. et al. CAPRI enables comparison of evolutionarily conserved RNA interacting regions. Nat. Commun. 10, 2682 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bae, J. W., Kwon, S. C., Na, Y., Kim, V. N. & Kim, J.-S. Chemical RNA digestion enables robust RNA-binding site mapping at single amino acid resolution. Nat. Struct. Mol. Biol. 27, 678–682 (2020).

    Article  PubMed  Google Scholar 

  • Bae, J. W., Kim, S., Kim, V. N. & Kim, J.-S. Photoactivatable ribonucleosides mark base-specific RNA-binding sites. Nat. Commun. 12, 6026 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mallam, A. L. et al. Systematic discovery of endogenous human ribonucleoprotein complexes. Cell Rep. 29, 1351–1368.e5 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Caudron-Herger, M. et al. R-DeeP: proteome-wide and quantitative identification of RNA-dependent proteins by density gradient ultracentrifugation. Mol. Cell 75, 184–199.e10 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerovac, M. et al. Global discovery of bacterial RNA-binding proteins by RNase-sensitive gradient profiles reports a new FinO domain protein. RNA 26, 1448–1463 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Brannan, K. W. et al. SONAR discovers RNA-binding proteins from analysis of large-scale protein-protein interactomes. Mol. Cell 64, 282–293 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin, W. et al. HydRA: deep-learning models for predicting RNA-binding capacity from protein interaction association context and protein sequence. Mol. Cell 83, 2595–2611.e11 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bressin, A. et al. TriPepSVM: de novo prediction of RNA-binding proteins based on short amino acid motifs. Nucleic Acids Res. 47, 4406–4417 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh, P. & Sowdhamini, R. Genome-wide survey of putative RNA-binding proteins encoded in the human proteome. Mol. BioSyst. 12, 532–540 (2016).

    Article  PubMed  Google Scholar 

  • Liao, J.-Y. et al. RBPWorld for exploring functions and disease associations of RNA-binding proteins across species. Nucleic Acids Res. 53, D220–D232 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao, J.-Y. et al. EuRBPDB: a comprehensive resource for annotation, functional and oncological investigation of eukaryotic RNA binding proteins (RBPs). Nucleic Acids Res. 48, D307–D313 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Esteban-Serna, S., McCaughan, H. & Granneman, S. Advantages and limitations of UV cross-linking analysis of protein–RNA interactomes in microbes. Mol. Microbiol. 120, 477–489 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mortimer, S. A., Kidwell, M. A. & Doudna, J. A. Insights into RNA structure and function from genome-wide studies. Nat. Rev. Genet. 15, 469–479 (2014).

    Article  PubMed  Google Scholar 

  • Flynn, R. A. et al. Transcriptome-wide interrogation of RNA secondary structure in living cells with icSHAPE. Nat. Protoc. 11, 273–290 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877–879 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiang, J. S., Schafer, D. M., Rothamel, K. L. & Yeo, G. W. Decoding protein–RNA interactions using CLIP-based methodologies. Nat. Rev. Genet. 25, 879–895 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi, S., Singh, S. S., Rozen-Gagnon, K. & Luna, J. M. Mapping RNA–protein interactions with subcellular resolution using colocalization CLIP. RNA 30, 920–937 (2024).

    PubMed  PubMed Central  Google Scholar 

  • Benhalevy, D., Anastasakis, D. G. & Hafner, M. Proximity-CLIP provides a snapshot of protein-occupied RNA elements in subcellular compartments. Nat. Methods 15, 1074–1082 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorenz, D. A. et al. Multiplexed transcriptome discovery of RNA-binding protein binding sites by antibody-barcode eCLIP. Nat. Methods 20, 65–69 (2023).

    Article  PubMed  Google Scholar 

  • Wolin, E. et al. SPIDR enables multiplexed mapping of RNA-protein interactions and uncovers a mechanism for selective translational suppression upon cell stress. Cell 188, 5384–5402.e25 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ducoli, L. et al. irCLIP-RNP and Re-CLIP reveal patterns of dynamic protein assemblies on RNA. Nature 641, 769–778 (2025).

    Article  PubMed  Google Scholar 

  • Her, H., Rothamel, K. L., Nguyen, G. G., Boyle, E. A. & Yeo, G. W. Mudskipper detects combinatorial RNA binding protein interactions in multiplexed CLIP data. Cell Genomics 4, 100603 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Nostrand, E. L. et al. A large-scale binding and functional map of human RNA-binding proteins. Nature 583, 711–719 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Nostrand, E. L. et al. Principles of RNA processing from analysis of enhanced CLIP maps for 150 RNA binding proteins. Genome Biol. 21, 90 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Logsdon, G. A., Vollger, M. R. & Eichler, E. E. Long-read human genome sequencing and its applications. Nat. Rev. Genet. 21, 597–614 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Zhao, Y., Bollas, A., Wang, Y. & Au, K. F. Nanopore sequencing technology, bioinformatics and applications. Nat. Biotechnol. 39, 1348–1365 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Monzó, C., Liu, T. & Conesa, A. Transcriptomics in the era of long-read sequencing. Nat. Rev. Genet. 26, 681–701 (2025).

    Article  PubMed  Google Scholar 

  • Garalde, D. R. et al. Highly parallel direct RNA sequencing on an array of nanopores. Nat. Methods 15, 201–206 (2018).

    Article  PubMed  Google Scholar 

  • Kim, Y. et al. Nanopore direct RNA sequencing of human transcriptomes reveals the complexity of mRNA modifications and crosstalk between regulatory features. Cell Genom. 5, 100872 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Castaldi, P. J., Abood, A., Farber, C. R. & Sheynkman, G. M. Bridging the splicing gap in human genetics with long-read RNA sequencing: finding the protein isoform drivers of disease. Hum. Mol. Genet. 31, R123–R136 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Su, Y. et al. Comprehensive assessment of mRNA isoform detection methods for long-read sequencing data. Nat. Commun. 15, 3972 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Castells-Garcia, A. et al. Super resolution microscopy reveals how elongating RNA polymerase II and nascent RNA interact with nucleosome clutches. Nucleic Acids Res. 50, 175–190 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarkar, J. & Myong, S. in Nanoscale Imaging. Methods in Molecular Biology Vol. 1814 (ed. Lyubchenko, Y.) 325–338 (Humana, 2018).

  • Thomsen, J. et al. DeepFRET, a software for rapid and automated single-molecule FRET data classification using deep learning. eLife 9, e60404 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ji, J., Wang, W. & Chen, C. Single-molecule techniques to visualize and to characterize liquid-liquid phase separation and phase transition. Acta Biochim. Biophys. Sin. 55, 1023–1033 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Khyzha, N., Ahmad, K. & Henikoff, S. Profiling transcriptome composition and dynamics within nuclear compartments using SLAM-RT&Tag. Mol. Cell 85, 1366–1380.e4 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghidini, A., Cléry, A., Halloy, F., Allain, F. H. T. & Hall, J. RNA-PROTACs: degraders of RNA-binding proteins. Angew. Chem. Int. Ed. 60, 3163–3169 (2021).

    Article  Google Scholar 

  • Bheemireddy, S., Sandhya, S., Srinivasan, N. & Sowdhamini, R. Computational tools to study RNA-protein complexes. Front. Mol. Biosci. 9, 954926 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, T. et al. Design and bioinformatics analysis of genome-wide CLIP experiments. Nucleic Acids Res. 43, 5263–5274 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Grønning, A. G. B. et al. DeepCLIP: predicting the effect of mutations on protein-RNA binding with deep learning. Nucleic Acids Res. 48, 7099–7118 (2020).

    PubMed  PubMed Central  Google Scholar 

  • Horlacher, M. et al. Towards in silico CLIP-seq: predicting protein-RNA interaction via sequence-to-signal learning. Genome Biol. 24, 180 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan, X., Fang, Y., Liu, X., Guo, X. & Shen, H.-B. RBPsuite 2.0: an updated RNA-protein binding site prediction suite with high coverage on species and proteins based on deep learning. BMC Biol. 23, 74 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, Y. et al. PrismNet: predicting protein–RNA interaction using in vivo RNA structural information. Nucleic Acids Res. 51, W468–W477 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh, J., Hanson, J., Paliwal, K. & Zhou, Y. RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning. Nat. Commun. 10, 5407 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen, T. et al. Accurate RNA 3D structure prediction using a language model-based deep learning approach. Nat. Methods 21, 2287–2298 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Penić, R. J., Vlašić, T., Huber, R. G., Wan, Y. & Šikić, M. RiNALMo: general-purpose RNA language models can generalize well on structure prediction tasks. Nat. Commun. 16, 5671 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Loureiro, R. J., Maiti, S., Mondal, K., Mukherjee, S. & Bujnicki, J. M. Modeling flexible RNA 3D structures and RNA-protein complexes. Curr. Opin. Struct. Biol. 94, 103137 (2025).

    Article  PubMed  Google Scholar 

  • Fox, D. M., MacDermaid, C. M., Schreij, A. M. A., Zwierzyna, M. & Walker, R. C. RNA folding using quantum computers. PLoS Comput. Biol. 18, e1010032 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Baek, M. et al. Accurate prediction of protein-nucleic acid complexes using RoseTTAFoldNA. Nat. Methods 21, 117–121 (2024).

    Article  PubMed  Google Scholar 

  • Krishna, R. et al. Generalized biomolecular modeling and design with RoseTTAFold All-Atom. Science 384, eadl2528 (2024).

    Article  PubMed  Google Scholar 

  • Carvajal-Patiño, J. G. et al. RNAmigos2: accelerated structure-based RNA virtual screening with deep graph learning. Nat. Commun. 16, 2799 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang, Z. et al. Partner-RBR: predicting multitype RNA-Binding residues based on mutual learning. J. Chem. Inf. Model. 65, 10783–10794 (2025).

    Article  PubMed  Google Scholar 

  • Chu, L.-C. et al. pyRBDome: a comprehensive computational platform for enhancing RNA-binding proteome data. Life Sci. Alliance 7, e202402787 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun, J. et al. Precise prediction of phase-separation key residues by machine learning. Nat. Commun. 15, 2662 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., Lang, M., Zhou, Y. & Zhang, Y. Predicting RNA structures and functions by artificial intelligence. Trends Genet. 40, 94–107 (2023).

    Article  Google Scholar 

  • Wei, J., Chen, S., Zong, L., Gao, X. & Li, Y. Protein–RNA interaction prediction with deep learning: structure matters. Brief. Bioinform. 23, bbab540 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Diao, B., Luo, J. & Guo, Y. A comprehensive survey on deep learning-based identification and predicting the interaction mechanism of long non-coding RNAs. Brief. Funct. Genomics 23, 314–324 (2024).

    Article  PubMed  Google Scholar 

  • Zhao, H., Yang, Y., Janga, S. C., Kao, C. C. & Zhou, Y. Prediction and validation of the unexplored RNA-binding protein atlas of the human proteome. Proteins 82, 640–647 (2014).

    Article  PubMed  Google Scholar 

  • Choi, Y. et al. Time-resolved profiling of RNA binding proteins throughout the mRNA life cycle. Mol. Cell 84, 1764–1782.e10 (2024).

    Article  PubMed  Google Scholar 

  • Fronk, A. D. et al. Development and validation of AI/ML derived splice-switching oligonucleotides. Mol. Syst. Biol. 20, 676–701 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, D. et al. Generative modeling for RNA splicing predictions and design. Preprint at bioRxiv https://doi.org/10.1101/2025.01.20.633986 (2025).

  • Yang, K. et al. Machine learning-optimized targeted detection of alternative splicing. Nucleic Acids Res. 53, gkae1260 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, X. et al. Base-resolution binding profile prediction of proteins on RNAs with deep learning. Nucleic Acids Res. 53, gkaf748 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kovalevskiy, O., Mateos-Garcia, J. & Tunyasuvunakool, K. AlphaFold two years on: validation and impact. Proc. Natl Acad. Sci. USA 121, e2315002121 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hennig, J. Structural biology of RNA and protein-RNA complexes after AlphaFold3. ChemBioChem 26, e202401047 (2025).

    Article  PubMed  Google Scholar 

  • Bahai, A., Kwoh, C. K., Mu, Y. & Li, Y. Systematic benchmarking of deep-learning methods for tertiary RNA structure prediction. PLoS Comput. Biol. 20, e1012715 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuret, K., Amalietti, A. G., Jones, D. M., Capitanchik, C. & Ule, J. Positional motif analysis reveals the extent of specificity of protein–RNA interactions observed by CLIP. Genome Biol. 23, 191 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, F. C. Y. & Ule, J. Advances in CLIP technologies for studies of protein-RNA interactions. Mol. Cell 69, 354–369 (2018).

    Article  PubMed  Google Scholar 

  • Bu, F. et al. RNA-Puzzles Round V: blind predictions of 23 RNA structures. Nat. Methods 22, 399–411 (2025).

    Article  PubMed  Google Scholar 

  • Kwon, D. RNA function follows form – why is it so hard to predict? Nature 639, 1106–1108 (2025).

    Article  PubMed  Google Scholar 

  • Zhang, S., Li, J., Zhou, Y. & Chen, S.-J. Enhancing RNA 3D structure prediction in CASP16: integrating physics-based modeling with machine learning for improved predictions. Proteins 94, 239–248 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Childs-Disney, J. L. et al. Targeting RNA structures with small molecules. Nat. Rev. Drug Discov. 21, 736–762 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bennett, C. F. Therapeutic antisense oligonucleotides are coming of age. Annu. Rev. Med. 70, 307–321 (2019).

    Article  PubMed  Google Scholar 

  • Licatalosi, D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Nostrand, E. L. et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods 13, 508–514 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Porter, D. F. et al. easyCLIP analysis of RNA-protein interactions incorporating absolute quantification. Nat. Commun. 12, 1569 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • May, D. G. & Roux, K. J. in Proximity Labeling: Methods and Protocols Vol. 2008 (eds Sunbul, M. & Jäschke, A.) 83–95 (Humana, 2019).

  • Kalocsay, M. in Proximity Labeling. Methods in Molecular Biology Vol. 2008 (eds Sunbul, M. & Jäschke, A.) 41–55 (Humana, 2019).

  • Ke, A. & Doudna, J. A. Crystallization of RNA and RNA–protein complexes. Methods 34, 408–414 (2004).

    Article  PubMed  Google Scholar 

  • Panda, A. C., Martindale, J. L. & Gorospe, M. Affinity pulldown of biotinylated RNA for Detection of protein-RNA complexes. Bio-protocol 6, e2062 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker, S. C., Good, P. D., Gipson, T. A. & Engelke, D. R. in RNA Detection and Visualization: Methods and Protocols Vol. 714 (ed. Gerst, J. E.) 423–444 (Humana, 2011).

  • Simon, M. D. et al. The genomic binding sites of a noncoding RNA. Proc. Natl Acad. Sci. USA 108, 20497–20502 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chu, C. & Chang, H.Y. in X-Chromosome Inactivation. Methods in Molecular Biology Vol. 1861 (ed. Sado, T.) 37–45 (Humana, 2018).

  • McHugh, C. A. & Guttman, M. in RNA Detection: Methods and Protocols Vol. 1649 (ed. Gaspar, I.) 473–488 (Humana, 2018).

  • Castello, A. et al. in Post-Transcriptional Gene Regulation. Methods in Molecular Biology Vol. 1358 (ed. Dassi, E.) 131–139 (Humana, 2016).

  • Ament, I. H., DeBruyne, N., Wang, F. & Lin, L. Long-read RNA sequencing: a transformative technology for exploring transcriptome complexity in human diseases. Mol. Ther. 33, 883–894 (2025).

    Article  PubMed  Google Scholar 

  • Sun, L. et al. Predicting dynamic cellular protein–RNA interactions by deep learning using in vivo RNA structures. Cell Res. 31, 495–516 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, H. et al. Algorithm for optimized mRNA design improves stability and immunogenicity. Nature 621, 396–403 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, S. et al. CodonBERT large language model for mRNA vaccines. Genome Res. 34, 1027–1035 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, S. et al. mRNA-LM: full-length integrated SLM for mRNA analysis. Nucleic Acids Res. 53, gkaf044 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang, G. et al. ASOptimizer: optimizing antisense oligonucleotides through deep learning for IDO1 gene regulation. Mol. Ther. Nucleic Acids 35, 102186 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Delre, P., Cerchia, C. & Lavecchia, A. Artificial intelligence in the development of small nucleic acid therapeutics: toward smarter and safer medicines. Drug Discov. Today 30, 104488 (2025).

    Article  PubMed  Google Scholar 

  • Leckie, J. et al. Artificial intelligence-driven design of antisense oligonucleotides for precision medicine in neuromuscular disorders. Genes 16, 1468 (2025).

    Article  PubMed  PubMed Central  Google Scholar