Green fabrication of PVA based biofilms incorporated with shrimp shell derived chitosan, plasticized with PEG or Gly and reinforced by biosynthesized ZnO nanoparticles

green-fabrication-of-pva-based-biofilms-incorporated-with-shrimp-shell-derived-chitosan,-plasticized-with-peg-or-gly-and-reinforced-by-biosynthesized-zno-nanoparticles
Green fabrication of PVA based biofilms incorporated with shrimp shell derived chitosan, plasticized with PEG or Gly and reinforced by biosynthesized ZnO nanoparticles

References

  1. Europe, P. Plastics – Plastics the Fast Facts. https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2025 (2025).

  2. Programme, U. N. E. Everything you need to know about plastic pollution. https://www.unep.org/news-and-stories/story/everything-you-need-know-about-plastic-pollution (2025).

  3. Dokl, M. et al. Global projections of plastic use, end-of-life fate and potential changes in consumption, reduction, recycling and replacement with bioplastics to 2050. Sustainable Prod. Consum. 51, 498–518. https://doi.org/10.1016/j.spc.2024.09.025 (2024).

    Google Scholar 

  4. OECD. Global Plastics Outlook: Economic Drivers, Environmental Impacts and Policy Options (OECD, 2022).

  5. Dimassi, S. N. et al. Effect of temperature and sunlight on the leachability potential of BPA and phthalates from plastic litter under marine conditions. Sci. Total Environ. 894, 164954. https://doi.org/10.1016/j.scitotenv.2023.164954 (2023).

    Google Scholar 

  6. Eales, J. et al. Human health impacts of exposure to phthalate plasticizers: an overview of reviews. Environ. Int. 158, 106903. https://doi.org/10.1016/j.envint.2021.106903 (2022).

    Google Scholar 

  7. Chen, G. et al. Replacing traditional plastics with biodegradable plastics: impact on carbon emissions. Engineering 32, 152–162. https://doi.org/10.1016/j.eng.2023.10.002 (2024).

    Google Scholar 

  8. MacLeod, M., Arp, H. P. H., Tekman, M. B. & Jahnke, A. The global threat from plastic pollution. 373, 61–65, https://doi.org/10.1126/science.abg5433 (2021).

  9. Okeke, E. S. et al. Microplastic burden in africa: A review of occurrence, impacts, and sustainability potential of bioplastics. Chem. Eng. J. Adv. 12, 100402. https://doi.org/10.1016/j.ceja.2022.100402 (2022).

    Google Scholar 

  10. Huang, S., Dong, Q., Che, S., Li, R. & Tang, K. H. D. Bioplastics and biodegradable plastics: A review of recent advances, feasibility and cleaner production. Sci. Total Environ. 969, 178911. https://doi.org/10.1016/j.scitotenv.2025.178911 (2025).

    Google Scholar 

  11. Elsaeed, S., Zaki, E., Diab, A., Tarek, M. A. & Omar, W. A. E. New Polyvinyl alcohol/gellan gum-based bioplastics with guava and Chickpea extracts for food packaging. Sci. Rep. 13, 22384. https://doi.org/10.1038/s41598-023-49756-0 (2023).

    Google Scholar 

  12. Suganthi, S., Vignesh, S., Kalyana Sundar, J. & Raj, V. Fabrication of PVA polymer films with improved antibacterial activity by fine-tuning via organic acids for food packaging applications. Appl. Water Sci. 10, 100. https://doi.org/10.1007/s13201-020-1162-y (2020).

    Google Scholar 

  13. Brunchi, C. E., Bercea, M., Morariu, S. & Avadanei, M. Investigations on the interactions between Xanthan gum and poly(vinyl alcohol) in solid state and aqueous solutions. Eur. Polymer J. 84, 161–172. https://doi.org/10.1016/j.eurpolymj.2016.09.006 (2016).

    Google Scholar 

  14. Teixeira, M. A., Amorim, M. T. P. & Felgueiras, H. P. Poly(Vinyl Alcohol)-Based nanofibrous electrospun scaffolds for tissue engineering applications. 12, 7 (2020).

  15. Flórez, M., Guerra-Rodríguez, E., Cazón, P. & Vázquez, M. Chitosan for food packaging: recent advances in active and intelligent films. Food Hydrocoll. 124, 107328. https://doi.org/10.1016/j.foodhyd.2021.107328 (2022).

    Google Scholar 

  16. Hassan, D. et al. Environmentally sustainable and green polymeric method for Chitosan (CH) film synthesis using natural acids and impact of zinc ferrite nanoparticles (NPs) on water solubility (WS) and physical properties. Polymers 16, 3466 (2024).

    Google Scholar 

  17. Hassan, D. & Sani, A. Chitosan films developed using all-natural resource for fruit preservation and the impact of lemon Peel extract mediated nickel ferrite nanoparticles on films’ physical and barrier properties. Food Chem. 482, 144068. https://doi.org/10.1016/j.foodchem.2025.144068 (2025).

    Google Scholar 

  18. Sani, A., Hassan, D., Ehsan, M., Sánchez-Rodríguez, E. P. & Melo-Máximo, D. V. Improving strawberry shelf life using Chitosan and zinc oxide nanoparticles from ginger-garlic extracts. Appl. Food Res. 5, 100765. https://doi.org/10.1016/j.afres.2025.100765 (2025).

    Google Scholar 

  19. Bakshi, P. S., Selvakumar, D., Kadirvelu, K. & Kumar, N. S. Chitosan as an environment friendly biomaterial – a review on recent modifications and applications. Int. J. Biol. Macromol. 150, 1072–1083. https://doi.org/10.1016/j.ijbiomac.2019.10.113 (2020).

    Google Scholar 

  20. Siripatrawan, U. & Harte, B. R. Physical properties and antioxidant activity of an active film from Chitosan incorporated with green tea extract. Food Hydrocoll. 24, 770–775. https://doi.org/10.1016/j.foodhyd.2010.04.003 (2010).

    Google Scholar 

  21. Dadashi, P., Bonsale, R. & Babaei, A. Chitosan/ZnO nanohybrid as an efficacious compatibilizer for PLA/PBS blend suitable candidate for biodegradable packaging applications. Sci. Rep. 15, 41661. https://doi.org/10.1038/s41598-025-25596-y (2025).

    Google Scholar 

  22. Azizpour, N. et al. Films of polylactic acid with graphene oxide-zinc oxide hybrid and mentha longifolia essential oil: effects on quality of refrigerated chicken fillet. Int. J. Food Microbiol. 426, 110893. https://doi.org/10.1016/j.ijfoodmicro.2024.110893 (2025).

    Google Scholar 

  23. Gülpınar, M., Tomul, F., Arslan, Y. & Tran, H. N. Chitosan-based film incorporated with silver-loaded organo-bentonite or organo-bentonite: synthesis and characterization for potential food packaging material. Int. J. Biol. Macromol. 274, 133197. https://doi.org/10.1016/j.ijbiomac.2024.133197 (2024).

    Google Scholar 

  24. Chandarana, C., Bonde, S., Sonwane, S. & Prajapati, B. Chitosan-based packaging: leading sustainable advancements in the food industry. Polym. Bull. https://doi.org/10.1007/s00289-025-05775-7 (2025).

    Google Scholar 

  25. Dadashi, P., Torbatinejad, K. & Babaei, A. Hybridization as a promising approach to engineering the desired performance of bio-nanocomposites: GO-ZnO hybrid reinforced PCL. Sci. Rep. 15, 17259. https://doi.org/10.1038/s41598-025-02087-8 (2025).

    Google Scholar 

  26. Vyas, A., Ng, S., Fu, T. & Anum, I. ZnO-Embedded carboxymethyl cellulose bioplastic film synthesized from sugarcane Bagasse for packaging applications. 17, 579 (2025).

  27. Xu, D., Liang, P., Ying, X., Li, X. & Cheng, Q. Development of cellulose/ZnO based bioplastics with enhanced gas barrier, UV-shielding effect and antibacterial activity. Int. J. Biol. Macromol. 271, 132335. https://doi.org/10.1016/j.ijbiomac.2024.132335 (2024).

    Google Scholar 

  28. Ghaderi, M., Mousavi, M., Yousefi, H. & Labbafi, M. All-cellulose nanocomposite film made from Bagasse cellulose nanofibers for food packaging application. Carbohydr. Polym. 104, 59–65. https://doi.org/10.1016/j.carbpol.2014.01.013 (2014).

    Google Scholar 

  29. El-Sakhawy, M., Tohamy, H. A. S., AbdelMohsen, M. M. & El-Missiry, M. Biodegradable carboxymethyl cellulose based material for sustainable/active food packaging application. 37, 2035–2050, (2024). https://doi.org/10.1177/08927057231211236

  30. Xie, D. et al. A novel, robust mechanical strength, and naturally degradable double crosslinking starch-based bioplastics for practical applications. Int. J. Biol. Macromol. 253, 126959. https://doi.org/10.1016/j.ijbiomac.2023.126959 (2023).

    Google Scholar 

  31. Mendes, A. R., Teixeira, P. & Poças, F. Use of zinc oxide nanoparticles incorporated in polybutylene adipate terephthalate for food Packaging. A focus on the impact in functional and Physic-Mechanical properties and on migration thereof. Packaging Technol. Sci. 37, 721–734. https://doi.org/10.1002/pts.2816 (2024).

    Google Scholar 

  32. Joseph, J. & Sathianathan, R. V. Quantitative analysis of nanoparticle migration from biopolymer-based packaging into food simulants using ICP-MS. Food Chem. 497, 147042. https://doi.org/10.1016/j.foodchem.2025.147042 (2025).

    Google Scholar 

  33. Mendes, C. R. et al. Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Sci. Rep. 12, 2658. https://doi.org/10.1038/s41598-022-06657-y (2022).

    Google Scholar 

  34. Izad Panah, S., Ghasemi, Z., Baei, M. S. & Masoumi, M. Facile biosynthesis of Ag/AgCl/TiO2@Fe2O3 ternary heterojunction nanocomposite: characterization and photocatalytic activity for real wastewater treatment under sunlight. J. Alloys Compd. 1012, 178417. https://doi.org/10.1016/j.jallcom.2024.178417 (2025).

    Google Scholar 

  35. Rastgar, M., Ghasemi, Z. & Samari, F. Biosynthesis of magnetic ZnO@Fe2O3 nanocomposites decorated with Ag/AgCl using hormoz island’s red soil and avicennia Marina leaf extract. Sci. Rep. 15, 15110. https://doi.org/10.1038/s41598-025-98442-w (2025).

    Google Scholar 

  36. Hassan, D. et al. The impact of Nickel–Zinc ferrite nanoparticles on the mechanical and barrier properties of Green-Synthesized Chitosan films produced using natural juices. Polymers 16, 3455 (2024).

    Google Scholar 

  37. El Basuini, M. F. et al. Effects of Mangrove (Avicennia marina) Leaf Aqueous Extract on Growth, Immunity, and Hypoxia Tolerance in Gray Mullet (Liza ramada). Aquaculture nutrition 2381301, (2025). https://doi.org/10.1155/anu/2381301 (2025).

  38. Cerri, F. et al. Natural products from mangroves: an overview of the anticancer potential of avicennia Marina. Pharmaceutics 14 https://doi.org/10.3390/pharmaceutics14122793 (2022).

  39. Abdi, V., Sourinejad, I., Yousefzadi, M., Ghasemi, Z. & Technology, T. A. S. o. S. Biosynthesis of Silver Nanoparticles from the Mangrove Rhizophora mucronata: Its Characterization and Antibacterial Potential. 43, 2163–2171 (2019).

  40. Shahin Lefteh, M., Sourinejad, I. & Ghasemi, Z. Avicennia Marina mediated synthesis of TiO2 nanoparticles: its antibacterial potential against some aquatic pathogens. Inorg. Nano-Metal Chem. 51, 1775–1785. https://doi.org/10.1080/24701556.2020.1852431 (2021).

    Google Scholar 

  41. Faisal, S. et al. Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous fruit extracts of myristica fragrans: their characterizations and biological and environmental applications. ACS Omega. 6, 9709–9722. https://doi.org/10.1021/acsomega.1c00310 (2021).

    Google Scholar 

  42. Saka, A. et al. Synthesis, Characterization, and antibacterial activity of ZnO nanoparticles from fresh leaf extracts of Apocynaceae, Carissa spinarum L. (Hagamsa). J. Nanomaterials. 2022 (6230298). https://doi.org/10.1155/2022/6230298 (2022).

  43. Abdelbaky, A. S., El-Mageed, A., Babalghith, T. A., Selim, A. O., Mohamed, A. M. H. A. & S. & Green synthesis and characterization of ZnO nanoparticles using pelargonium odoratissimum (L.) aqueous leaf extract and their Antioxidant, antibacterial and Anti-inflammatory activities. Antioxidants 11, 1444 (2022).

    Google Scholar 

  44. Tilahun, E., Adimasu, Y. & Dessie, Y. Biosynthesis and optimization of ZnO nanoparticles using ocimum lamifolium leaf extract for electrochemical sensor and antibacterial activity. ACS Omega. 8, 27344–27354. https://doi.org/10.1021/acsomega.3c02709 (2023).

    Google Scholar 

  45. Singh, K. & Yadav, S. Biosynthesis of a range of ZnO nanoparticles utilising salvia Hispanica L. seed extract and evaluation of their bioactivity. Sci. Rep. 15, 4043. https://doi.org/10.1038/s41598-025-87355-3 (2025).

    Google Scholar 

  46. Mazarei, S., Safaie, M., Homaei, A. & Ghasemi, Z. Progress in tailor-made of anti-fouling coating strategies for marine fish farming cages based on green synthesis of zinc oxide nanoparticles from avicennia Marina leaves. Prog. Org. Coat. 208, 109465. https://doi.org/10.1016/j.porgcoat.2025.109465 (2025).

    Google Scholar 

  47. Ghasemi, Z., Abdi, V. & Sourinejad, I. Single-step biosynthesis of Ag/AgCl@TiO2 plasmonic nanocomposite with enhanced visible light photoactivity through aqueous leaf extract of a Mangrove tree. Appl. Nanosci. 10, 507–516. https://doi.org/10.1007/s13204-019-01149-4 (2020).

    Google Scholar 

  48. Ghasemi, Z., Abdi, V. & Sourinejad, I. Green fabrication of Ag/AgCl@TiO2 superior plasmonic nanocomposite: Biosynthesis, characterization and photocatalytic activity under sunlight. J. Alloys Compd. 841, 155593. https://doi.org/10.1016/j.jallcom.2020.155593 (2020).

    Google Scholar 

  49. Teli, M. D. & Sheikh, J. Extraction of Chitosan from shrimp shells waste and application in antibacterial finishing of bamboo Rayon. Int. J. Biol. Macromol. 50, 1195–1200. https://doi.org/10.1016/j.ijbiomac.2012.04.003 (2012).

    Google Scholar 

  50. Worku, L. A. et al. Experimental investigations on PVA/chitosan and PVA/chitin films for active food packaging using Oxytenanthera abyssinica lignin nanoparticles and its UV-shielding, antimicrobial, and antiradical effects. Int. J. Biol. Macromol. 254, 127644. https://doi.org/10.1016/j.ijbiomac.2023.127644 (2024).

    Google Scholar 

  51. Lopretti Correa, M. I. et al. Biorefinery of lignocellulosic and marine resources for obtaining active PVA/Chitosan/Phenol films for application in intelligent food packaging. Polymers 17, 82 (2025).

    Google Scholar 

  52. Song, D. et al. An active Bio-Based food packaging material of ZnO@Plant Polyphenols/Cellulose/Polyvinyl alcohol: DESIGN, characterization and application. Int. J. Mol. Sci. 24, 1577 (2023).

    Google Scholar 

  53. Ebrahimi, Y., Peighambardoust, S. J., Peighambardoust, S. H. & Karkaj, S. Z. Development of antibacterial carboxymethyl Cellulose-Based nanobiocomposite films containing various metallic nanoparticles for food packaging applications. 84, 2537–2548, (2019). https://doi.org/10.1111/1750-3841.14744

  54. Domján, A., Bajdik, J. & Pintye-Hódi, K. Understanding of the plasticizing effects of glycerol and PEG 400 on Chitosan films using Solid-State NMR spectroscopy. Macromolecules 42, 4667–4673. https://doi.org/10.1021/ma8021234 (2009).

    Google Scholar 

  55. Vieira, M. G. A., da Silva, M. A., dos Santos, L. O. & Beppu, M. M. Natural-based plasticizers and biopolymer films: A review. Eur. Polymer J. 47, 254–263. https://doi.org/10.1016/j.eurpolymj.2010.12.011 (2011).

    Google Scholar 

  56. Prateepchanachai, S., Thakhiew, W., Devahastin, S. & Soponronnarit, S. Mechanical properties improvement of Chitosan films via the use of plasticizer, charge modifying agent and film solution homogenization. Carbohydr. Polym. 174, 253–261. https://doi.org/10.1016/j.carbpol.2017.06.069 (2017).

    Google Scholar 

  57. Shankar, S. & Rhim, J. W. Preparation and characterization of agar/lignin/silver nanoparticles composite films with ultraviolet light barrier and antibacterial properties. Food Hydrocoll. 71, 76–84. https://doi.org/10.1016/j.foodhyd.2017.05.002 (2017).

    Google Scholar 

  58. Chen, D., Lin, S., Cao, L. & Huang, W. Bio-templated nanocellulose/ZnO hybrids reinforced PVA/chitosan films with synergistic antibacterial activity for enhanced food preservation. Food Packaging Shelf Life. 52, 101616. https://doi.org/10.1016/j.fpsl.2025.101616 (2025).

    Google Scholar 

  59. Ayoub, A. W., Sayed, S. M., Hefnawy, Y. A. & Youssef, A. M. Innovative use of chitosan/PVA/GE/ZnO biofilms based on Sage nanoemulsion for sustainable antimicrobial packaging of chilled chicken meat parts. J. Food Meas. Characterization, 1–24 (2025).

  60. Rhim, J. W. & Wang, L. F. Preparation and characterization of carrageenan-based nanocomposite films reinforced with clay mineral and silver nanoparticles. Appl. Clay Sci. 97–98, 174–181. https://doi.org/10.1016/j.clay.2014.05.025 (2014).

    Google Scholar 

  61. Liu, J., Gao, Y., Cao, D., Zhang, L. & Guo, Z. Nanoparticle dispersion and aggregation in polymer nanocomposites: insights from molecular dynamics simulation. Langmuir 27, 7926–7933. https://doi.org/10.1021/la201073m (2011).

    Google Scholar 

  62. Gupta, S., Dixit, M., Sharma, K. & Saxena, N. S. Mechanical study of metallized polyethylene terephthalate (PET) films. Surf. Coat. Technol. 204, 661–666. https://doi.org/10.1016/j.surfcoat.2009.08.051 (2009).

    Google Scholar 

  63. Park, S. et al. PET/Bio-Based terpolyester blends with high dimensional thermal stability. Polymers 13, 728 (2021).

    Google Scholar 

  64. Abdolrasouli, M. H., Sadeghi, G. M. M., Nazockdast, H. & Babaei, A. Polylactide/Polyethylene/Organoclay blend nanocomposites: Structure, mechanical and thermal properties. Polym.-Plast. Technol. Eng. 53, 1417–1424. https://doi.org/10.1080/03602559.2014.909477 (2014).

    Google Scholar 

  65. Clarizio, S. C., Tatara, R. A. & Tensile Strength Elongation, Hardness, and tensile and flexural moduli of PLA filled with Glycerol-Plasticized DDGS. J. Polym. Environ. 20, 638–646. https://doi.org/10.1007/s10924-012-0452-3 (2012).

    Google Scholar 

  66. Tanniru, M., Yuan, Q. & Misra, R. D. On significant retention of impact strength in clay–reinforced high-density polyethylene (HDPE) nanocomposites. Polymer 47, 2133–2146. https://doi.org/10.1016/j.polymer.2006.01.063 (2006).

    Google Scholar 

  67. Sepet, H., Tarakcioglu, N. & Misra, R. Investigation of mechanical, thermal and surface properties of nanoclay/HDPE nanocomposites produced industrially by melt mixing approach. J. Compos. Mater. 50, 3105–3116. https://doi.org/10.1177/0021998315615653 (2016).

    Google Scholar 

  68. Güllü, A., Özdemir, A. & Özdemir, E. Experimental investigation of the effect of glass fibres on the mechanical properties of polypropylene (PP) and polyamide 6 (PA6) plastics. Mater. Design. 27, 316–323. https://doi.org/10.1016/j.matdes.2004.10.013 (2006).

    Google Scholar 

  69. Hasegawa, N., Okamoto, H., Kato, M. & Usuki, A. Preparation and mechanical properties of polypropylene–clay hybrids based on modified polypropylene and organophilic clay. J. Appl. Polym. Sci. 78, 1918–1922. https://doi.org/10.1002/1097-4628(20001209)78:11%3C1918::AID-APP100%3E3.0.CO;2-H (2000).

    Google Scholar 

  70. Ramesh, P. et al. Green synthesis and characterization of biocompatible zinc oxide nanoparticles and evaluation of its antibacterial potential. Sens. Bio-Sensing Res. 31, 100399. https://doi.org/10.1016/j.sbsr.2021.100399 (2021).

    Google Scholar 

  71. Jiang, X. et al. Synthesis of a novel water-soluble Chitosan derivative for flocculated decolorization. J. Hazard. Mater. 185, 1482–1488. https://doi.org/10.1016/j.jhazmat.2010.10.072 (2011).

    Google Scholar 

  72. Justine, M. et al. Synthesis and characterizations studies of ZnO and ZnO-SiO2 nanocomposite for biodiesel applications. Mater. Today: Proc. 36, 440–446. https://doi.org/10.1016/j.matpr.2020.05.034 (2021).

    Google Scholar 

  73. Varma, R. & Vasudevan, S. Extraction, Characterization, and antimicrobial activity of Chitosan from horse mussel modiolus modiolus. ACS Omega. 5, 20224–20230. https://doi.org/10.1021/acsomega.0c01903 (2020).

    Google Scholar 

  74. López, F. A., Mercê, A. L. R., Alguacil, F. J. & López-Delgado, A. A kinetic study on the thermal behaviour of Chitosan. J. Therm. Anal. Calorim. 91, 633–639. https://doi.org/10.1007/s10973-007-8321-3 (2008).

    Google Scholar 

  75. Pourjavadi, A., Tavakoli, E., Motamedi, A. & Salimi, H. Facile synthesis of extremely biocompatible double-network hydrogels based on Chitosan and poly(vinyl alcohol) with enhanced mechanical properties. 135, 45752, https://doi.org/10.1002/app.45752 (2018).

  76. Schnabl, K. B., Mandemaker, L. D. B., Ganjkhanlou, Y., Vollmer, I. & Weckhuysen, B. M. Green additives in Chitosan-based bioplastic films: Long-term stability assessment and aging effects. 17, e202301426, https://doi.org/10.1002/cssc.202301426 (2024).

  77. Caicedo, C., Díaz-Cruz, C. A., Jiménez-Regalado, E. J. & Aguirre-Loredo, R. Y. Effect of plasticizer content on mechanical and water vapor permeability of maize Starch/PVOH/Chitosan composite films. Materials 15, 1274 (2022).

    Google Scholar 

  78. Castro, C., Gargallo, L., Leiva, A. & Radić, D. Interactions in blends containing Chitosan with functionalized polymers. 97, 1953–1960, (2005). https://doi.org/10.1002/app.21979

  79. Rhim, J. W., Wang, L. F. & Hong, S. I. Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocoll. 33, 327–335. https://doi.org/10.1016/j.foodhyd.2013.04.002 (2013).

    Google Scholar 

  80. Shojaee Kang Sofla, M., Mortazavi, S. & Seyfi, J. Preparation and characterization of Polyvinyl alcohol/chitosan blends plasticized and compatibilized by glycerol/polyethylene glycol. Carbohydr. Polym. 232, 115784. https://doi.org/10.1016/j.carbpol.2019.115784 (2020).

    Google Scholar 

  81. González-López, M. E., Calva-Estrada, S. J., Gradilla-Hernández, M. S. & Barajas-Álvarez, P. Current trends in biopolymers for food packaging: a review. Front. Sustainable Food Syst. 7–2023. https://doi.org/10.3389/fsufs.2023.1225371 (2023).

  82. Luzi, F., Torre, L., Kenny, J. M. & Puglia, D. Bio- and Fossil-Based polymeric blends and nanocomposites for packaging: Structure–Property relationship. Materials 12, 471 (2019).

    Google Scholar 

  83. Ilyas, R. A. et al. Natural-Fiber-Reinforced Chitosan, Chitosan blends and their nanocomposites for various advanced applications. Polymers 14, 874 (2022).

    Google Scholar 

  84. Yilmaz, P., Demirhan, E. & Ozbek, B. Development of ficus carica Linn leaves extract incorporated Chitosan films for active food packaging materials and investigation of their properties. Food Biosci.. 46, 101542. https://doi.org/10.1016/j.fbio.2021.101542 (2022).

    Google Scholar 

  85. Lu, M., Zhou, Q., Yu, H., Chen, X. & Yuan, G. Colorimetric indicator based on chitosan/gelatin with nano-ZnO and black peanut seed coat anthocyanins for application in intelligent packaging. Food Res. Int. 160, 111664. https://doi.org/10.1016/j.foodres.2022.111664 (2022).

    Google Scholar 

  86. Tabassum, Z., Girdhar, M., Kumar, A., Malik, T. & Mohan, A. ZnO Nanoparticles-Reinforced Chitosan-Xanthan gum blend novel film with enhanced properties and degradability for application in food packaging. ACS Omega. 8, 31318–31332. https://doi.org/10.1021/acsomega.3c03763 (2023).

    Google Scholar 

  87. Sun, Y., Liu, Z., Zhang, L., Wang, X. & Li, L. Effects of plasticizer type and concentration on rheological, physico-mechanical and structural properties of chitosan/zein film. Int. J. Biol. Macromol. 143, 334–340. https://doi.org/10.1016/j.ijbiomac.2019.12.035 (2020).

    Google Scholar 

  88. Amaregouda, Y., Kamanna, K. & Gasti, T. Fabrication of intelligent/active films based on chitosan/polyvinyl alcohol matrices containing Jacaranda cuspidifolia anthocyanin for real-time monitoring of fish freshness. Int. J. Biol. Macromol. 218, 799–815. https://doi.org/10.1016/j.ijbiomac.2022.07.174 (2022).

    Google Scholar 

  89. Qin, Y., Liu, Y., Zhang, X. & Liu, J. Development of active and intelligent packaging by incorporating betalains from red Pitaya (Hylocereus polyrhizus) Peel into starch/polyvinyl alcohol films. Food Hydrocoll. 100, 105410. https://doi.org/10.1016/j.foodhyd.2019.105410 (2020).

    Google Scholar 

Download references