Evaluation of bacteriophage efficacy against Pseudomonas aeruginosa in ex vivo and in vitro canine skin systems

evaluation-of-bacteriophage-efficacy-against-pseudomonas-aeruginosa-in-ex-vivo-and-in-vitro-canine-skin-systems
Evaluation of bacteriophage efficacy against Pseudomonas aeruginosa in ex vivo and in vitro canine skin systems

References

  1. Qin, S. et al. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal. Transduct. Target. Ther. 7, 199. https://doi.org/10.1038/s41392-022-01056-1 (2022).

    Google Scholar 

  2. Ibberson, C. B. & Whiteley, M. The social life of microbes in chronic infection. Curr. Opin. Microbiol. 53, 44–50. https://doi.org/10.1016/j.mib.2020.02.003 (2020).

    Google Scholar 

  3. Uruén, C., Chopo-Escuin, G., Tommassen, J., Mainar-Jaime, R. C. & Arenas, J. Biofilms as promoters of bacterial antibiotic resistance and tolerance. Antibiotics 10, 3 (2021).

    Google Scholar 

  4. Rossi, E. et al. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat. Rev. Microbiol. 19, 331–342. https://doi.org/10.1038/s41579-020-00477-5 (2021).

    Google Scholar 

  5. World Health Organization. WHO Bacterial Priority Pathogens List, 2024: Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. (CC BY-NC-SA 3.0 IGO, 2024).

  6. de Sousa, T. et al. Pseudomonas aeruginosa: one health approach to Deciphering hidden relationships in Northern Portugal. J. Appl. Microbiol. 136 https://doi.org/10.1093/jambio/lxaf037 (2025).

  7. Broncano-Lavado, A., Santamaría-Corral, G. & Esteban, J. García-Quintanilla, M. Advances in bacteriophage therapy against relevant MultiDrug-Resistant pathogens. Antibiotics (Basel). https://doi.org/10.3390/antibiotics10060672 (2021).

  8. Chanishvili, N. Bacteriophages as therapeutic and prophylactic means: summary of the Soviet and post Soviet experiences. Curr. Drug Deliv. 13, 309–323. https://doi.org/10.2174/156720181303160520193946 (2016).

    Google Scholar 

  9. Alves, D. R. et al. A novel bacteriophage cocktail reduces and disperses Pseudomonas aeruginosa biofilms under static and flow conditions. Microb. Biotechnol. 9, 61–74. https://doi.org/10.1111/1751-7915.12316 (2016).

    Google Scholar 

  10. Knecht, L. E., Veljkovic, M. & Fieseler, L. Diversity and function of phage encoded depolymerases. Front. Microbiol. 10, 2949. https://doi.org/10.3389/fmicb.2019.02949 (2019).

    Google Scholar 

  11. Guo, Z., Liu, M. & Zhang, D. Potential of phage depolymerase for the treatment of bacterial biofilms. Virulence 14, 2273567. https://doi.org/10.1080/21505594.2023.2273567 (2023).

    Google Scholar 

  12. Vilas Boas, D. et al. Discrimination of bacteriophage infected cells using locked nucleic acid fluorescent in situ hybridization (LNA-FISH). Biofouling 32, 179–190. https://doi.org/10.1080/08927014.2015.1131821 (2016).

    Google Scholar 

  13. Chen, Y. E., Fischbach, M. A. & Belkaid, Y. Skin microbiota-host interactions. Nature 553, 427–436. https://doi.org/10.1038/nature25177 (2018).

    Google Scholar 

  14. Kengmo Tchoupa, A., Kretschmer, D., Schittek, B. & Peschel, A. The epidermal lipid barrier in microbiome–skin interaction. Trends Microbiol. 31, 723–734. https://doi.org/10.1016/j.tim.2023.01.009 (2023).

    Google Scholar 

  15. Gonzalez Manuel, R. et al. Effect of Human Burn Wound Exudate on Pseudomonas aeruginosa Virulence. mSphere. https://doi.org/10.1128/msphere.00111-15 (2016).

  16. Gonzalez, M. R. et al. Transcriptome analysis of Pseudomonas aeruginosa cultured in human burn wound exudates. Front. Cell. Infect. Microbiol. 8, 39. https://doi.org/10.3389/fcimb.2018.00039 (2018).

    Google Scholar 

  17. Smith, E. E. et al. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc. Natl. Acad. Sci. USA 103, 8487–8492. https://doi.org/10.1073/pnas.0602138103 (2006).

  18. Mukherjee, P., Roy, S., Ghosh, D. & Nandi, S. K. Role of animal models in biomedical research: a review. Lab. Anim. Res. 38, 18. https://doi.org/10.1186/s42826-022-00128-1 (2022).

    Google Scholar 

  19. Frosini, S. M., Bond, R., Loeffler, A. & Larner, J. Opportunities for topical antimicrobial therapy: permeation of canine skin by fusidic acid. BMC Vet. Res. 13, 345. https://doi.org/10.1186/s12917-017-1270-6 (2017).

    Google Scholar 

  20. Andersson, M. Å., Madsen, L. B., Schmidtchen, A. & Puthia, M. Development of an experimental ex vivo wound model to evaluate antimicrobial efficacy of topical formulations. Int. J. Mol. Sci. 22, 5045 (2021).

    Google Scholar 

  21. Schaudinn, C. et al. Development, standardization and testing of a bacterial wound infection model based on ex vivo human skin. PLOS ONE. 12, e0186946. https://doi.org/10.1371/journal.pone.0186946 (2017).

    Google Scholar 

  22. Alves, D. R. et al. Development of a High-Throughput ex-Vivo burn wound model using Porcine Skin, and its application to evaluate new approaches to control wound infection. Front. Cell. Infect. Microbiol. 8, 196. https://doi.org/10.3389/fcimb.2018.00196 (2018).

    Google Scholar 

  23. Milho, C., Andrade, M., Vilas Boas, D., Alves, D. & Sillankorva, S. Antimicrobial assessment of phage therapy using a Porcine model of biofilm infection. Int. J. Pharm. 557, 112–123. https://doi.org/10.1016/j.ijpharm.2018.12.004 (2019).

    Google Scholar 

  24. Vieira, A. et al. Phage therapy to control multidrug-resistant Pseudomonas aeruginosa skin infections: in vitro and ex vivo experiments. Eur. J. Clin. Microbiol. Infect. Dis. 31, 3241–3249. https://doi.org/10.1007/s10096-012-1691-x (2012).

    Google Scholar 

  25. Nang, S. C. et al. Pharmacokinetics/pharmacodynamics of phage therapy: a major hurdle to clinical translation. Clin. Microbiol. Infect. 29, 702–709. https://doi.org/10.1016/j.cmi.2023.01.021 (2023). 

    Google Scholar 

  26. Bürkle, M. et al. Phage-phage competition and biofilms affect interactions between two virulent bacteriophages and Pseudomonas aeruginosa. Isme J. 19 https://doi.org/10.1093/ismejo/wraf065 (2025).

  27. Guihard, G., Bénédetti, H., Besnard, M. & Letellier, L. Phosphate efflux through the channels formed by colicins and phage T5 in Escherichia coli cells is responsible for the fall in cytoplasmic ATP. J. Biol. Chem. 268, 17775–17780 (1993).

    Google Scholar 

  28. Dalponte, A. et al. Characterization and purification of Pseudomonas aeruginosa phages for the treatment of canine infections. BMC Microbiol. 25, 289. https://doi.org/10.1186/s12866-025-04005-4 (2025).

    Google Scholar 

  29. Chen, H. et al. A Klebsiella-phage cocktail to broaden the host range and delay bacteriophage resistance both in vitro and in vivo. NPJ Biofilms Microbiomes. 10, 127. https://doi.org/10.1038/s41522-024-00603-8 (2024).

    Google Scholar 

  30. Yang, Y. et al. Development of a bacteriophage cocktail to constrain the emergence of Phage-Resistant Pseudomonas aeruginosa. Front. Microbiol. 11, 327. https://doi.org/10.3389/fmicb.2020.00327 (2020).

    Google Scholar 

  31. Pirnay, J. P. et al. Personalized bacteriophage therapy outcomes for 100 consecutive cases: a multicentre, multinational, retrospective observational study. Nat. Microbiol. 9, 1434–1453. https://doi.org/10.1038/s41564-024-01705-x (2024).

    Google Scholar 

  32. Elfadadny, A. et al. Bacteriophage therapy in clinical practice: case studies of Pseudomonas aeruginosa infections. J. Chemother. 1–12. https://doi.org/10.1080/1120009x.2025.2547147 (2025).

  33. Azeredo, J. et al. Critical review on biofilm methods. Crit. Rev. Microbiol. 43, 313–351. https://doi.org/10.1080/1040841x.2016.1208146 (2017).

    Google Scholar 

  34. Rasamiravaka, T., Labtani, Q., Duez, P. & El Jaziri, M. The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. Biomed. Res. Int. 2015 (759348). https://doi.org/10.1155/2015/759348 (2015).

  35. David, A. et al. Pseudomonas aeruginosa biofilm lifecycle: involvement of mechanical constraints and timeline of matrix production. Antibiot. (Basel). 13. https://doi.org/10.3390/antibiotics13080688 (2024).

  36. Molendijk Michèle, M. et al. Bacteriophage therapy reduces Staphylococcus aureus in a Porcine and human ex vivo burn wound infection model. Antimicrob. Agents Chemother. 68, e00650–e00624. https://doi.org/10.1128/aac.00650-24 (2024).

    Google Scholar 

  37. Oliveira, V. C. et al. Identification and characterization of new bacteriophages to control Multidrug-Resistant Pseudomonas aeruginosa biofilm on endotracheal tubes. Front. Microbiol. 11, 580779. https://doi.org/10.3389/fmicb.2020.580779 (2020).

    Google Scholar 

  38. Namonyo, S., Weynberg, K. D., Guo, J. & Carvalho, G. The effectiveness and role of phages in the disruption and inactivation of clinical P. aeruginosa biofilms. Environ. Res. 234, 116586. https://doi.org/10.1016/j.envres.2023.116586 (2023).

    Google Scholar 

  39. Zurabov, F., Glazunov, E., Kochetova, T., Uskevich, V. & Popova, V. Bacteriophages with depolymerase activity in the control of antibiotic resistant Klebsiella pneumoniae biofilms. Sci. Rep. 13, 15188. https://doi.org/10.1038/s41598-023-42505-3 (2023).

    Google Scholar 

  40. Roach, D. R. et al. Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen. Cell Host Microbe 22, 38–47.e34. https://doi.org/10.1016/j.chom.2017.06.018 (2017).

  41. Malik, D. J. et al. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv. Colloid Interface Sci. 249, 100–133. https://doi.org/10.1016/j.cis.2017.05.014 (2017).

    Google Scholar 

  42. Engeman, E. et al. Synergistic killing and re-sensitization of Pseudomonas aeruginosa to antibiotics by phage-antibiotic combination treatment. Pharmaceuticals (Basel). 14. https://doi.org/10.3390/ph14030184 (2021).

  43. Gu Liu, C. et al. Phage-Antibiotic synergy is driven by a unique combination of antibacterial mechanism of action and stoichiometry. mBio 11. https://doi.org/10.1128/mBio.01462-20 (2020).

  44. Holger, D. J. et al. Bacteriophage-antibiotic combination therapy for multidrug-resistant Pseudomonas aeruginosa: in vitro synergy testing. J. Appl. Microbiol. 133, 1636–1649. https://doi.org/10.1111/jam.15647 (2022).

    Google Scholar 

  45. Jerzsele, Á. & Pásztiné-Gere, E. Evaluating synergy between Marbofloxacin and gentamicin in Pseudomonas aeruginosa strains isolated from dogs with otitis externa. Acta Microbiol. Immunol. Hung. 62, 45–55. https://doi.org/10.1556/AMicr.62.2015.1.4 (2015).

    Google Scholar 

  46. Hartmann, R. et al. Quantitative image analysis of microbial communities with BiofilmQ. Nat. Microbiol. 6, 151–156. https://doi.org/10.1038/s41564-020-00817-4 (2021).

    Google Scholar 

  47. Kopenhagen, A. et al. Streptococcus pneumoniae affects endothelial cell migration in microfluidic circulation. Front. Microbiol. 13 https://doi.org/10.3389/fmicb.2022.852036 (2022).

Download references