Topical treatment of diabetic foot ulcers using a novel quercetin-loaded hyaluosome gel nanoformulation

topical-treatment-of-diabetic-foot-ulcers-using-a-novel-quercetin-loaded-hyaluosome-gel-nanoformulation
Topical treatment of diabetic foot ulcers using a novel quercetin-loaded hyaluosome gel nanoformulation

References

  1. Yameny, A. A. Diabetes Mellitus: a comprehensive review of types, pathophysiology, complications, and standards of care in diabetes 2025. J. Med. Life Sci. 7 (1), 134–141 (2025).

    Google Scholar 

  2. Magliano, D. J. & Boyko, E. J. IDF diabetes atlas. (2022).

  3. Forbes, J. M. & Cooper, M. E. Mechanisms of diabetic complications. Physiol. Rev. 93 (1), 137–188 (2013).

    Google Scholar 

  4. Jodheea-Jutton, A., Hindocha, S. & Bhaw-Luximon, A. Health economics of diabetic foot ulcer and recent trends to accelerate treatment. Foot 52, 101909 (2022).

    Google Scholar 

  5. Chamanga, E. T. Clinical management of non-healing wounds. Nurs. Standard. 32 (29), 48–62 (2018).

    Google Scholar 

  6. Wang, X., Yuan, C. X., Xu, B. & Yu, Z. Diabetic foot ulcers: classification, risk factors and management. World J. Diabetes. 13 (12), 1049 (2022).

    Google Scholar 

  7. Boulton, A. J. M. Epidemiology of Diabetic neuropathy. The Epidemiology of Diabetes Mellitus 2nd edn, 565–576 (Wiley-Blackwell, 2008).

  8. Ruiz-Ramos, J., Escolà-Vergé, L., Monje-López, Á. E., Herrera-Mateo, S. & Rivera, A. The interventions and challenges of antimicrobial stewardship in the emergency department. Antibiotics 12 (10), 1522 (2023).

    Google Scholar 

  9. Liu, Y., Li, B., Yi, C., Chen, X. & Yu, X. Application of polydopamine as antibacterial and anti-inflammatory materials. Progress Biomedical Eng. 7 (2), 22005 (2025).

    Google Scholar 

  10. Castangia, I. et al. Canthaxanthin biofabrication, loading in green phospholipid vesicles and evaluation of in vitro protection of cells and promotion of their monolayer regeneration. Biomedicines 10 (1), 157 (2022).

    Google Scholar 

  11. Rho, N. K., Kim, H. S., Kim, S. Y. & Lee, W. Injectable skin boosters in aging skin rejuvenation: a current overview. Arch. Plast. Surg. 51 (06), 528–541 (2024).

    Google Scholar 

  12. Liu, T. et al. Active microneedle patch equipped with spontaneous bubble generation for enhanced rheumatoid arthritis treatment. Theranostics 15 (8), 3424 (2025).

    Google Scholar 

  13. Scharnagl, H., Nauck, M., Wieland, H. & März, W. The Friedewald formula underestimates LDL cholesterol at low concentrations. (2001).

  14. Bhattacharjee, A. et al. Development and optimization of Besifloxacin hydrochloride loaded liposomal gel prepared by thin film hydration method using 32 full factorial design. Colloids Surf. Physicochem Eng. Asp. 585, 124071 (2020).

    Google Scholar 

  15. Ramírez-García, G. et al. Characterization of phthalocyanine functionalized quantum dots by dynamic light scattering, laser doppler, and capillary electrophoresis. Anal. Bioanal Chem. 409, 1707–1715 (2017).

    Google Scholar 

  16. Wang, F. et al. In situ decoration of cuscn Nanorod arrays with carbon quantum dots for highly efficient photoelectrochemical performance. Carbon N Y. 125, 344–351 (2017).

    Google Scholar 

  17. Alshamsan, A. Nanoprecipitation is more efficient than emulsion solvent evaporation method to encapsulate cucurbitacin I in PLGA nanoparticles. Saudi Pharm. J. 22 (3), 219–222 (2014).

    Google Scholar 

  18. Mudunkotuwa, I. A., Al Minshid, A. & Grassian, V. H. ATR-FTIR spectroscopy as a tool to probe surface adsorption on nanoparticles at the liquid–solid interface in environmentally and biologically relevant media. Analyst 139 (5), 870–881 (2014).

    Google Scholar 

  19. Rana, R. et al. Leaf attenuated total reflection fourier transform infrared (ATR-FTIR) biochemical profile of grassland plant species related to land-use intensity. Ecol. Indic. 84, 803–810 (2018).

    Google Scholar 

  20. Demyan, M. S. et al. Use of specific peaks obtained by diffuse reflectance fourier transform mid-infrared spectroscopy to study the composition of organic matter in a haplic Chernozem. Eur. J. Soil. Sci. 63 (2), 189–199 (2012).

    Google Scholar 

  21. Surin, A. M. et al. Disruption of functional activity of mitochondria during MTT assay of viability of cultured neurons. Biochem. (Moscow). 82, 737–749 (2017).

    Google Scholar 

  22. Luo, W. et al. Antibiofilm activity of polyethylene glycol-quercetin nanoparticles-loaded gelatin-N, O-carboxymethyl Chitosan composite nanogels against Staphylococcus epidermidis. J. Vet. Sci. 25 (2), e30 (2024).

    Google Scholar 

  23. Salimi, A. et al. Ellagic acid, a polyphenolic compound, selectively induces ROS-mediated apoptosis in cancerous B-lymphocytes of CLL patients by directly targeting mitochondria. Redox Biol. 6, 461–471 (2015).

    Google Scholar 

  24. Çelik-Uzuner, S. & Uzuner, U. An extensive method for maintenance of sterility in mammalian cell culture laboratory routine. Challenges 8 (2), 26 (2017).

    Google Scholar 

  25. Puschmann, E. Liquidus Tracking: a Promising Vitrification Technique for Large Scale Encapsulated 3-D Cell Culture Preservation (UCL (University College London), 2015).

  26. Guneidy, R. A., Zaki, E. R., Gad, A. A. M., Saleh, N. S. E. D. & Shokeer, A. Evaluation of phenolic content diversity along with antioxidant/pro-oxidant, glutathione transferase inhibition, and cytotoxic potential of selected commonly used plants. Prev. Nutr. Food Sci. 27 (3), 282 (2022).

    Google Scholar 

  27. Kamiloglu, S., Sari, G., Ozdal, T. & Capanoglu, E. Guidelines for cell viability assays. Food Front. 1 (3), 332–349 (2020).

    Google Scholar 

  28. Saelens, J. W. et al. An ancestral mycobacterial effector promotes dissemination of infection. Cell 185 (24), 4507–4525 (2022).

    Google Scholar 

  29. Odinotski, S. et al. A conductive hydrogel-based microneedle platform for real‐time pH measurement in live animals. Small 18 (45), 2200201 (2022).

    Google Scholar 

  30. Chellathurai, M. S. et al. Pharmaceutical Chitosan hydrogels: a review on its design and applications. Int. J. Biol. Macromol. ;135775. (2024).

  31. Pollard, D. J., Hunt, G., Kirschner, T. & Salmon, P. Rheological characterization of a fungal fermentation for the production of Pneumocandins. Bioprocess. Biosyst Eng. 24, 373–383 (2002).

    Google Scholar 

  32. Almanaa, T. N. et al. Silica nanoparticle acute toxicity on male rattus norvegicus domestica: ethological behavior, hematological disorders, biochemical analyses, hepato-renal function, and antioxidant-immune response. Front. Bioeng. Biotechnol. 10, 868111 (2022).

    Google Scholar 

  33. Yin, R., Xue, Y., Hu, J., Hu, X. & Shen, Q. The effects of diet and streptozotocin on metabolism and gut microbiota in a type 2 diabetes mellitus mouse model. Food Agric. Immunol. 31 (1), 723–739 (2020).

    Google Scholar 

  34. Samarghandian, S., Azimi-Nezhad, M. & Farkhondeh, T. Immunomodulatory and antioxidant effects of saffron aqueous extract (Crocus sativus L.) on streptozotocin-induced diabetes in rats. Indian Heart J. 69 (2), 151–159 (2017).

    Google Scholar 

  35. Parhizkar, P., Mohammadi, R., Shahrooz, R. & Mohammadi, V. Effects of pyrroloquinoline Quinone (PQQ) on ischemia-reperfusion injury in rat ovaries: histological and biochemical assessments. Bull. Emerg. Trauma. 7 (1), 35 (2019).

    Google Scholar 

  36. Li, X. et al. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model. Exp. Mol. Med. 50 (4), 1–14 (2018).

    Google Scholar 

  37. Jørgensen, L. B., Sørensen, J. A., Jemec, G. B. E. & Yderstræde, K. B. Methods to assess area and volume of wounds–a systematic review. Int. Wound J. 13 (4), 540–553 (2016).

    Google Scholar 

  38. Wallblom, K., Lundgren, S., Saleh, K., Schmidtchen, A. & Puthia, M. Image-based non‐invasive assessment of Suction blister wounds for clinical safety and efficacy. Wound Repair. Regeneration. 32 (4), 343–359 (2024).

    Google Scholar 

  39. Hassan, G. et al. A study of Roflumilast treatment on functional and structural changes in hippocampus in depressed adult male Wistar rats. PLoS One. 19 (2), e0296187 (2024).

    Google Scholar 

  40. Asaad, G. F. & Mostafa, R. E. Lactoferrin mitigates ethanol-induced gastric ulcer via modulation of ROS/ICAM-1/Nrf2 signaling pathway in Wistar rats. Iran. J. Basic. Med. Sci. 25 (12), 1522 (2022).

    Google Scholar 

  41. Ascione, F., Guarino, A. M., Calabrò, V., Guido, S. & Caserta, S. A novel approach to quantify the wound closure dynamic. Exp. Cell. Res. 352 (2), 175–183 (2017).

    Google Scholar 

  42. Salumbides, B. C., Lehet, K. M., Ndikuyeze, G. & Pili, R. Pre-Clinical models of renal carcinoma and their utility in drug development. Curr. Protoc. Pharmacol. 47 (1), 13–14 (2009).

    Google Scholar 

  43. Chaikham, P., Prangthip, P. & Jirasatid, S. Tissue-specific polyphenol enrichment following oral supplementation with spray-dried Lacticaseibacillus casei-Maoberry juice in rats. Food Chem. Adv. 8, 101081 (2025).

    Google Scholar 

  44. Shankar, K. & George, O. Rat brain tissue RNA extraction/cDNA synthesis for qPCR. (2020).

  45. Omran, T. A., Madsø, I. L., Sæther, P. C., Bemanian, V. & Tunsjø, H. S. Selection of optimal extraction and RT-PCR protocols for stool RNA detection of colorectal cancer associated immune genes. Sci. Rep. 14 (1), 27468 (2024).

    Google Scholar 

  46. Abedini Bakhshmand, E. & Soltani, B. M. Regulatory effect of hsa-miR-5590-3P on TGFβ signaling through targeting of TGFβ-R1, TGFβ-R2, SMAD3 and SMAD4 transcripts. Biol. Chem. 400 (5), 677–685 (2019).

    Google Scholar 

  47. Shihab, T. J., Sultan, A. A., Atiyah, A. G. & Alwash, S. W. Evaluation of histopathological and healing potentials of the full-thickness cutaneous wound for a topical ointment formulation containing extract of bark Quercus aegilops in mice. Iraqi J. Vet. Sci. 37, 121–128 (2023).

    Google Scholar 

  48. Roediger, B. et al. An atypical parvovirus drives chronic tubulointerstitial nephropathy and kidney fibrosis. Cell 175 (2), 530–543 (2018).

    Google Scholar 

  49. Al-Sabawy, H. B., Rahawy, A. M. & Al-Mahmood, S. S. Standard techniques for formalin-fixed paraffin-embedded tissue: a pathologist’s perspective. (2021).

  50. Schüürmann, M., Stecher, M. M., Paasch, U., Simon, J. C. & Grunewald, S. Evaluation of digital staining for ex vivo confocal laser scanning microscopy. J. Eur. Acad. Dermatol. Venereol. 34 (7), 1496–1499 (2020).

    Google Scholar 

  51. Hsu, S. M., Raine, L. & Fanger, H. X. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J. Histochem. Cytochemistry. 29 (4), 577–580 (1981).

    Google Scholar 

  52. Lopez-Vidal, L. et al. Formulation and optimization of pH-sensitive nanocrystals for improved oral delivery. Drug Deliv Transl Res. 14 (5), 1301–1318 (2024).

    Google Scholar 

  53. Zhou, Q. et al. Bridging smart nanosystems with clinically relevant models and advanced imaging for precision drug delivery. Adv. Sci. 11 (14), 2308659 (2024).

    Google Scholar 

  54. Azeem, M. et al. An insight into anticancer, antioxidant, antimicrobial, antidiabetic and anti-inflammatory effects of quercetin: a review. Polym. Bull. 80 (1), 241–262 (2023).

    Google Scholar 

  55. Cai, X., Fang, Z., Dou, J., Yu, A. & Zhai, G. Bioavailability of quercetin: problems and promises. Curr. Med. Chem. 20 (20), 2572–2582 (2013).

    Google Scholar 

  56. Lukić, M., Pantelić, I. & Savić, S. D. Towards optimal ph of the skin and topical formulations: from the current state of the art to tailored products. Cosmetics 8 (3), 69 (2021).

    Google Scholar 

  57. Wadhwa, K. et al. New insights into Quercetin nanoformulations for topical delivery. Phytomedicine Plus. 2 (2), 100257 (2022).

    Google Scholar 

  58. Maitra, S. et al. Recent advancements and future perspectives in diacerein delivery systems for rheumatoid arthritis: novel strategies and emerging technologies. Palestinian Med. Pharm. J. (Pal Med. Pharm. J). 11 (1), None–None (2025).

    Google Scholar 

  59. Nurjis, F. et al. Synergistic combinatorial delivery system based on nanoliposome encapsulating doxorubicin and Sorafenib for broad-spectrum cancer treatment. J. Microencapsul. 42 (3), 300–312 (2025).

    Google Scholar 

  60. Sivakumar, M., Muthu, Y. & Elumalai, K. Advancements in drug delivery systems: a focus on microsphere-based targeted delivery. Biomedical Mater. Devices. 3 (2), 1030–1057 (2025).

    Google Scholar 

  61. Poon, V. K. M. & Burd, A. In vitro cytotoxity of silver: implication for clinical wound care. Burns 30 (2), 140–147 (2004).

    Google Scholar 

  62. Karnam, S., Jagtap, U., Jindal, A. B. & Paul, A. T. Evaluation of synergistic anti-inflammatory activity of selected natural products in combination with Teriflunomide in LPS stimulated RAW 264.7 cells for rheumatoid arthritis treatment. South. Afr. J. Bot. 184, 217–228 (2025).

    Google Scholar 

  63. Chen, J. P. & Wu, S. Acid/base-treated activated carbons: characterization of functional groups and metal adsorptive properties. Langmuir 20 (6), 2233–2242 (2004).

    Google Scholar 

  64. Alyami, H., Dahmash, E., Bowen, J. & Mohammed, A. R. An investigation into the effects of excipient particle size, blending techniques and processing parameters on the homogeneity and content uniformity of a blend containing low-dose model drug. PLoS One. 12 (6), e0178772 (2017).

    Google Scholar 

  65. Panthi, V. K., Imran, M., Chaudhary, A., Paudel, K. R. & Mohammed, Y. The significance of quercetin-loaded advanced nanoformulations for the management of diabetic wounds. Nanomedicine 18 (4), 391–411 (2023).

    Google Scholar 

  66. Ghiorghita, C. A., Platon, I. V., Lazar, M. M., Dinu, M. V. & Aprotosoaie, A. C. Trends in polysaccharide-based hydrogels and their role in enhancing the bioavailability and bioactivity of phytocompounds. Carbohydr. Polym. 122033 (2024).

  67. Srivastava, N. & Choudhury, A. R. Stimuli-responsive polysaccharide-based smart hydrogels and their emerging applications. Ind. Eng. Chem. Res. 62 (2), 841–866 (2022).

    Google Scholar 

  68. Thomas, S., Oyedeji, A. O., Oluwafemi, O. S. & PJ, R. J. Nanotechnology in Herbal Medicine: Applications and Innovations (Elsevier, 2023).

  69. Liu, J. et al. Reversing the natural drug resistance of gram-negative bacteria to fusidic acid via forming drug–phospholipid complex. Bioengineering 11 (2), 177 (2024).

    Google Scholar 

  70. Chowdhury, A. & Mitra Mazumder, P. Unlocking the potential of flavonoid-infused drug delivery systems for diabetic wound healing with a mechanistic exploration. Inflammopharmacology 32 (5), 2861–2896 (2024).

    Google Scholar 

  71. Munusamy, T. & Rajeshkumar, S. Green synthesis of nanoparticles for wound healing. In: Recent Advances in Nanomedicines Mediated Wound Healing. Elsevier; 47–68. (2025).

  72. van Rijt, S. & Habibovic, P. Enhancing regenerative approaches with nanoparticles. J. R Soc. Interface. 14 (129), 20170093 (2017).

    Google Scholar 

  73. Kusnadi, K. et al. Collagen-based nanoparticles as drug delivery system in wound healing applications. Int. J. Nanomed. ;11321–11341. (2024).

  74. Gao, L. et al. Hypolipidemic effect of fragarianilgerrensis Schlecht. Medicine compound on hyperlipidemic rats. Lipids Health Dis. 17, 1–9 (2018).

    Google Scholar 

  75. Sun, Y. et al. Autoimmune mechanisms and inflammation in obesity-associated type 2 diabetes, atherosclerosis, and non-alcoholic fatty liver disease. Funct. Integr. Genomics. 25 (1), 1–18 (2025).

    Google Scholar 

  76. Ježek, P. Physiological fatty acid-stimulated insulin secretion and redox signaling versus lipotoxicity. Antioxid. Redox Signal. 42 (10–12), 566–622 (2025).

    Google Scholar 

  77. Vongthoung, K., Lerdvuthisopon, N. & Somparn, N. The Effect of Benjakul Water Extract on Pancreas in Rats Fed a high-fat Diet (Thammasat University, 2015).

  78. Helen, D. O. T. et al. Virgin coconut oil supplementation ameliorates diabetes and atrazine-induced inflammation in male Wistar rats. Saudi J. Biomed. Res. 9 (04), 42–50 (2024).

    Google Scholar 

  79. Sharafifard, F., Kazeminasab, F., Ghanbari Rad, M., Ghaedi, K. & Rosenkranz, S. K. The combined effects of high-intensity interval training and time-restricted feeding on the AKT/FOXO1/PEPCK pathway in diabetic rats. Sci. Rep. 15 (1), 13898 (2025).

    Google Scholar 

  80. Brito, A. K. et al. Experimental models of type 2 diabetes mellitus induced by combining hyperlipidemic diet (HFD) and streptozotocin administration in rats: an integrative review. Biomedicines 13 (5), 1158 (2025).

    Google Scholar 

  81. Raziyeva, K. et al. Immunology of acute and chronic wound healing. Biomolecules 11 (5), 700 (2021).

    Google Scholar 

  82. Mu, X. et al. IL-17 in wound repair: bridging acute and chronic responses. Cell. Commun. Signal. 22 (1), 288 (2024).

    Google Scholar 

  83. Nirenjen, S. et al. Exploring the contribution of pro-inflammatory cytokines to impaired wound healing in diabetes. Front. Immunol. 14, 1216321 (2023).

    Google Scholar 

  84. Kouassi, M. C., Grisel, M. & Gore, E. Multifunctional active ingredient-based delivery systems for skincare formulations: a review. Colloids Surf. B Biointerfaces. 217, 112676 (2022).

    Google Scholar 

  85. Qiu, S., Zhu, F. & Tong, L. Application of targeted drug delivery by cell membrane-based biomimetic nanoparticles for inflammatory diseases and cancers. Eur. J. Med. Res. 29 (1), 523 (2024).

    Google Scholar 

  86. Huang, X. et al. Advanced Nanotechnology-Driven innovations for corneal neovascularization therapy: smart drug delivery and enhanced treatment strategies. Adv. Mater. 2508726. (2025).

  87. Malhi, S. & Gu, X. Nanocarrier-mediated drugs targeting cancer stem cells: an emerging delivery approach. Expert Opin. Drug Deliv. 12 (7), 1177–1201 (2015).

    Google Scholar 

  88. Rathod, S. et al. Advances on nanoformulation approaches for delivering plant-derived antioxidants: a case of quercetin. Int. J. Pharm. 625, 122093 (2022).

    Google Scholar 

  89. Wang, H. et al. Materials, syntheses and biomedical applications of nano-quercetin formulations: a comprehensive literature review. Int. J. Nanomed. 8729–8764. (2025).

  90. Spanò, D. P. & Scilabra, S. D. Tissue inhibitor of metalloproteases 3 (TIMP-3): in vivo analysis underpins its role as a master regulator of ectodomain shedding. Membranes (Basel). 12 (2), 211 (2022).

    Google Scholar 

  91. Arpino, V., Brock, M. & Gill, S. E. The role of timps in regulation of extracellular matrix proteolysis. Matrix Biol. 44, 247–254 (2015).

    Google Scholar 

  92. Gill, S. E. & Parks, W. C. Metalloproteinases and their inhibitors: regulators of wound healing. Int. J. Biochem. Cell. Biol. 40 (6–7), 1334–1347 (2008).

    Google Scholar 

  93. D’Andrea, G. Quercetin: a flavonol with multifaceted therapeutic applications? Fitoterapia 106, 256–271 (2015).

    Google Scholar 

  94. Taherkhani, S. et al. Metalloproteinases (MMPs) in hypertensive disorders: role, function, pharmacology, and potential strategies to mitigate pathophysiological changes. Front. Pharmacol. 16, 1559288 (2025).

    Google Scholar 

  95. Kurahashi, T. & Fujii, J. Roles of antioxidative enzymes in wound healing. J. Dev. Biol. 3 (2), 57–70 (2015).

    Google Scholar 

  96. Zhao, R. et al. Innovative delivery strategies for quercetin: a comprehensive review of advances and challenges. Compr. Rev. Food Sci. Food Saf. 24 (3), e70146 (2025).

    Google Scholar 

  97. Singh, S. S. et al. A critical review on nanomaterial based therapeutics for diabetic wound healing. Biotechnol. Genet. Eng. Rev. 39 (2), 622–656 (2023).

    Google Scholar 

  98. Hegazi, S., Aly, R., Mesilhy, R. & Aljohary, H. Diabetic foot ulcer wound healing and tissue regeneration: signaling pathways and mechanisms (In: Diabetic Foot Ulcers-Pathogenesis, Innovative Treatments and AI Applications. IntechOpen, 2024).

  99. Chirumbolo, S. The role of quercetin, flavonols and flavones in modulating inflammatory cell function. Inflamm. Allergy-Drug Targets (Formerly Curr. Drug Targets-Inflamm Allergy)(discontinued). 9 (4), 263–285 (2010).

    Google Scholar 

  100. Rathna, R. P. & Kulandhaivel, M. Advancements in wound healing: integrating biomolecules, drug delivery carriers, and targeted therapeutics for enhanced tissue repair. Arch. Microbiol. 206 (4), 199 (2024).

    Google Scholar 

  101. Ganai, S. A., Shah, M., ul, D., Dar, S. R. & Padder, S. A. Plant flavonol Quercetin engenders cytotoxic effect in different pre-clinical cancer models through modulation of diverse epigenetic regulators. Nucleus 1–22. (2024).

  102. Badhwar, R., Singh, R. & Popli, H. Implementation of quality by design (QbD) approach in development of QCT-SMEDDS with combination of AgNPs for diabetic foot ulcer management. Indian J. Pharm. Educ. Res. 55, 1207–1223 (2021).

    Google Scholar 

  103. Vijapur, L. S. et al. Wound healing potential of green synthesized silver nanoparticles of glycyrrhiza glabra linn root extract: a preclinical study. J. Trace Elem. Minerals. 11, 100214 (2025).

    Google Scholar 

  104. Li, T., Wei, D., Wang, J. & Gao, L. Revealing the multi-target mechanisms of fespixon cream in diabetic foot ulcer healing: integrated network pharmacology, molecular docking, and clinical RT-qPCR validation. Curr. Issues Mol. Biol. 47 (7), 485 (2025).

    Google Scholar 

  105. Mizgała-Izworska, E. The role of flavonoids in prevention and treatment of selected skin diseases. J. Pre-Clinical Clin. Res. 16 (3), 99–107 (2022).

    Google Scholar 

  106. Zhang, Y. et al. Novel exosome-like vesicles from dendrobium officinale: unraveling a pioneering extraction protocol and their skin anti-aging potentials. Extracell. Vesicle. 6, 100090 (2025).

    Google Scholar 

  107. Xia, F. et al. An elucidation of the anti-photoaging efficacy and molecular mechanisms of epigallocatechin gallate nanoparticles in a Balb/c murine model. Foods 14 (13), 2150 (2025).

    Google Scholar 

Download references