A novel AI-coupled flow chamber method quantifying erythrocyte osmotic fragility

a-novel-ai-coupled-flow-chamber-method-quantifying-erythrocyte-osmotic-fragility
A novel AI-coupled flow chamber method quantifying erythrocyte osmotic fragility

References

  1. Parpart, A. K., Lorenz, P. B., Parpart, E. R., Gregg, J. R. & Chase, A. M. The Osmotic Resistance (Fragility) of Human Red Cells. J. Clin. Investigation. 26(4), 636-640 (1947).

  2. Jacobs, M. H. & Parpart, A. K. Osmotic properties of the erythrocyte. Biol. Bull. 60, 95–119 https://doi.org/10.2307/1537022 (1931).

  3. Pérez-Pacheco, A. et al. Erythrocytes’ osmotic fragility test with a standard abbe refractometer. Revista médica Del. Hosp. Gen. De México. 83, 20–25 (2020).

    Google Scholar 

  4. Ciepiela, O., Adamowicz-Salach, A., Zgodzińska, A., Łazowska, M. & Kotuła, I. Flow cytometric osmotic fragility test: increased assay sensitivity for clinical application in pediatric hematology. Cytometry B Clin. Cytom. 94, 189–195 (2018).

    Google Scholar 

  5. Walski, T., Chludzińska, L., Komorowska, M. & Witkiewicz, W. Individual Osmotic Fragility Distribution: A New Parameter for Determination of the Osmotic Properties of Human Red Blood Cells. Biomed Res Int 2014, 162102 (2014).

  6. Tatu, T. & Sweatman, D. Hemolysis area: A new parameter of erythrocyte osmotic fragility for screening of thalassemia trait. J. Lab. Physicians. 10, 214 (2018).

    Google Scholar 

  7. Knychala, M. A. et al. Red cell distribution width and erythrocyte osmotic stability in type 2 diabetes mellitus. J. Cell. Mol. Med. 25, 2505–2516 (2021).

    Google Scholar 

  8. Saxena, R. K. & Seshadri, V. Measurement of osmotic resistance of normal and pathological human red blood cells. Indian J. Physiol. Pharmacol. 27, 1–6 (1983).

    Google Scholar 

  9. Sutton, D. G. M. & Sellon, D. C. Haematopoietic and immune systems. Equine Med. Surg. Reproduction: Second Ed. 10–210 https://doi.org/10.1016/B978-0-7020-2801-4.00010-9 (2013).

  10. Zhan, Y., Loufakis, D. N., Bao, N. & Lu, C. Characterizing osmotic Lysis kinetics under microfluidic hydrodynamic focusing for erythrocyte fragility studies. Lab. Chip. 12, 5063–5068 (2012).

    Google Scholar 

  11. Beri, D. et al. Babesiosis and sickle red blood cells: loss of deformability, altered osmotic fragility, and hypervesiculation. Blood 145, 2202–2213 (2025).

    Google Scholar 

  12. Sauer, A., Kurzion, T., Meyerstein, D. & Meyerstein, N. Kinetics of hemolysis of normal and abnormal red blood cells in glycerol-containing media. BBA – Biomembr. 1063, 203–208 (1991).

    Google Scholar 

  13. Khor, J. & Boo, Y. L. SPTA1-Related Hereditary Spherocytosis: Novel Compound Heterozygous Mutations With Severe Clinical Manifestation. Cureus 17, (2025).

  14. Lophaisankit, P. et al. Feline erythrocytic osmotic fragility in normal and anemic Cats—A preliminary study. Vet Sci 12, (2025).

  15. Gerda, B. A. et al. Comparative analysis of the osmotic fragility of erythrocytes across various taxa of vertebrates. Žurnal èvolûcionnoj Biohimii I Fiziologii. 60, 460–482 (2024).

    Google Scholar 

  16. Igbokwe, N. A. & Igbokwe, I. O. Osmotic fragility during in vitro erythrocyte cytotoxicity induced by aluminium chloride, lead acetate or mercuric chloride in hyposmolar sucrose media. Interdiscip Toxicol. 14, 38–46 (2021).

    Google Scholar 

  17. Uchendu, C., Ambali, S. F., Ayo, J. O., Esievo, K. A. N. & Umosen, A. J. Erythrocyte osmotic fragility and lipid peroxidation following chronic co-exposure of rats to Chlorpyrifos and deltamethrin, and the beneficial effect of alpha-lipoic acid. Toxicol. Rep. 1, 373 (2014).

    Google Scholar 

  18. Hemmatibardehshahi, S., Brandon-Coatham, M., Holt, A. & Acker, J. P. Variation in the osmotic characteristics of aging red blood cells: insights for cryopreservation optimization. Cytotherapy 27, 661–670 (2025).

    Google Scholar 

  19. Correia, M. J. et al. Hematological profile and erythrocyte osmotic fragility of free-living yellow-footed tortoise chelonoidis denticulatus (Linnaeus, 1766). Vet Res. Commun 49, (2025).

  20. Peltier, S. et al. Proteostasis and metabolic dysfunction in a distinct subset of storage-induced senescent erythrocytes targeted for clearance. BioRxiv https://doi.org/10.1101/2024.09.11.612195 (2024).

    Google Scholar 

  21. de Souza Teixeira, M. B. et al. Toxicological, Hematological, and Pathological Effects of Acute Copper and Lead Intoxication in Grass Carp (Ctenopharyngodon idella). Ecotoxicology (2025). https://doi.org/10.1007/S10646-025-02900-0, doi:10.1007/S10646-025-02900-0.

  22. Kogawa, H., Yabushita, N., Satoh, M. & Kageyama, K. In vitro effects of free fatty acids on water content and osmotic fragility of erythrocytes in rabbits. C R Seances Soc. Biol. Fil. 191, 267–272 (1997).

    Google Scholar 

  23. Neshev, N. I. et al. Kinetic regularities of erythrocyte hemolysis and hemoglobin oxidation under the action of sulfur-nitrosyl iron complexes as nitric oxide donors. Russ. Chem. Bull. 59, 2215–2218 (2010).

    Google Scholar 

  24. Cueff, A. et al. Effects of elevated intracellular calcium on the osmotic fragility of human red blood cells. Cell. Calcium. 47, 29–36 (2010).

    Google Scholar 

  25. Sprandel, U. & Zöllner, N. Osmotic fragility of drug carrier erythrocytes. Res. Exp. Med. 185, 77–85 (1985).

    Google Scholar 

  26. Murata, K. et al. Structural Determinants of Water Permeation through Aquaporin-1. NATURE vol. 407 www.nature.com (2000).

  27. Tradtrantip, L., Jin, B. J., Yao, X., Anderson, M. O. & Verkman, A. S. Aquaporin-Targeted therapeutics: State-of-the-Field. Adv. Exp. Med. Biol. 969, 239–250 (2017).

    Google Scholar 

  28. Salman, M. M., Kitchen, P., Yool, A. J. & Bill, R. M. Recent breakthroughs and future directions in drugging Aquaporins. Trends Pharmacol. Sci. 43, 30–42 (2022).

    Google Scholar 

  29. Kwang-Hua, C. W. Temperature-dependent viscosity dominated transport control through AQP1 water channel. J. Theor. Biol. 480, 92–98 (2019).

    Google Scholar 

  30. Verkman, A. S. Aquaporins in clinical medicine. Annual Revi. Med. 63, 303–316 (2012). https://doi.org/10.1146/annurev-med-043010-193843

  31. Kuchel, P. W. & Benga, G. Why does the mammalian red blood cell have aquaporins? BioSystems 82, 189–196 (2005).

  32. Xie, H. et al. Molecular mechanisms of Mercury-Sensitive Aquaporins. J. Am. Chem. Soc. 144, 22229–22241 (2022).

    Google Scholar 

  33. Day, R. E. et al. Human aquaporins: regulators of transcellular water flow. Biochim. Biophys. Acta. 1840, 1492–1506 (2014).

    Google Scholar 

  34. Alleva, K., Chara, O., Amodeo, G. & Aquaporins Another piece in the osmotic puzzle. FEBS Lett. 586, 2991–2999 (2012).

    Google Scholar 

  35. Engel, A., Walz, T. & Agre, P. The Aquaporin family of membrane water channels. Curr. Opin. Struct. Biol. 4, 545 (1994).

    Google Scholar 

  36. Niemietz, C. M. & Tyerman, S. D. New Potent Inhibitors of Aquaporins: Silver and Gold Compounds Inhibit Aquaporins of Plant and Human Origin. FEBS lett. 531(3), 443-447 (2002).

  37. Abir-Awan, M. et al. Inhibitors of mammalian aquaporin water channels. Int. J. Mol. Sci. 20 (2019). https://doi.org/10.3390/ijms20071589

  38. Williamson, J., Shanahan, M. & Hochmuth, R. The influence of temperature on red cell deformability. Blood 46, 611–624 (1975).

    Google Scholar 

  39. Xia, J., Browning, J. D. & O’Dell, B. L. Decreased plasma membrane thiol concentration is associated with increased osmotic fragility of erythrocytes in zinc-deficient rats. J. Nutr. 129, 814–819 (1999).

    Google Scholar 

  40. Igbokwe, N. A. A review of the factors that influence erythrocyte osmotic fragility. Sokoto J. Veterinary Sci. 16, 1 (2019).

    Google Scholar 

  41. Brauckmann, S. et al. Lipopolysaccharide-induced hemolysis: evidence for direct membrane interactions. Sci. Rep. 6, (2016).

  42. Gwozdzinski, K., Pieniazek, A., Sudak, B. & Kaca, W. Alterations in human red blood cell membrane properties induced by the lipopolysaccharide from proteus mirabilis S1959. Chem. Biol. Interact. 146, 73–80 (2003).

    Google Scholar 

  43. Gwoździński, K., Pienia̧zek, A. & Kaca, W. Lipopolysaccharide from proteus mirabilis O29 induces changes in red blood cell membrane lipids and proteins. Int. J. Biochem. Cell. Biol. 35, 333–338 (2003).

    Google Scholar 

  44. Vorobeva, E. V., Krasikova, I. N. & Solov’eva, T. F. Influence of lipopolysaccharides and lipids A from some marine bacteria on spontaneous and Escherichia coli LPS-induced TNF-α release from peripheral human blood cells. Biochem. (Moscow). 71, 759–766 (2006).

    Google Scholar 

  45. Some effects of serum components on osmotic fragility of red. blood cells – PubMed. https://pubmed.ncbi.nlm.nih.gov/1230724/

  46. Orbach, A., Zelig, O., Yedgar, S. & Barshtein, G. Biophysical and biochemical markers of red blood cell fragility. Transfus. Med. Hemother. 44, 183–187 (2017).

    Google Scholar 

  47. Richieri, G. V. & Mel, H. C. Temperature effects on osmotic fragility, and the erythrocyte membrane. Biochim. Biophys. Acta. 813, 41–50 (1985).

    Google Scholar 

  48. Utoh, J., Zajkowski-Brown, J. E. & Harasaki, H. Effects of heat on fragility and morphology of human and calf erythrocytes. J. Investigative Surg. 5, 305–313 http://dx.doi.org/10.3109/08941939209012448 (2009).

  49. Tzounakas, V. L. et al. Osmotic hemolysis is a donor-specific feature of red blood cells under various storage conditions and genetic backgrounds. Transfus. (Paris). 61, 2538–2544 (2021).

    Google Scholar 

  50. Massaldi, H. A., Richieri, G. V. & Mel, H. C. Osmotic fragility model for red cell populations. Biophys. J. 54, 301–308 (1988).

    Google Scholar 

  51. Weiss, G. H. & Zajicek, G. Kinetics of red blood cells following hemolysis. J. Theor. Biol. 23, 475–491 (1969).

    Google Scholar 

  52. Kim, H. D., Luthra, M. G., Watts, R. P. & Stern, L. Z. Factors influencing osmotic fragility of red blood cells in Duchenne muscular dystrophy. Neurology 30, 726–731 (1980).

    Google Scholar 

  53. Feng, C., Fan, R., Ma, H. & Zhang, H. The impact of pressure and temperature on the quality of suspended red blood cells: an ex vivo simulation study. Transfus. Med. https://doi.org/10.1111/TME.13141 (2025).

    Google Scholar 

  54. Fullerton, G. D., Kanal, K. M. & Cameron, I. L. Osmotically unresponsive water fraction on proteins: Non-ideal osmotic pressure of bovine serum albumin as a function of pH and salt concentration. Cell. Biol. Int. 30, 86–92 (2006).

    Google Scholar 

  55. Coldman, M. F., Gent, M. & Good, W. Relationships between osmotic fragility and other species-specific variables of mammalian erythrocytes. Comp. Biochem. Physiol. 34, 759–772 (1970).

    Google Scholar 

  56. Li, L. et al. A microfluidic platform for osmotic fragility test of red blood cells. RSC Adv. 2, 7161–7165 (2012).

    Google Scholar 

  57. Anderson, P. C. & Lovrien, R. E. Human red cell hemolysis rates in the subsecond to seconds range. An analysis. Biophys. J. 20, 181–191 (1977).

    Google Scholar 

  58. Górnicki, A. The hemolysis kinetics of psoriatic red blood cells. Blood Cells Mol. Dis. 41, 154–157 (2008).

    Google Scholar 

  59. Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. (Zagreb). 25, 141 (2015).

    Google Scholar 

  60. Martin Bland, J., Altman, D. G., Statistical methods for & assessing agreement between two methods of clinical measurement. Lancet 327, 307–310 (1986).

  61. Frey, M. E., Petersen, H. C. & Gerke, O. Nonparametric limits of agreement for small to moderate sample sizes: A simulation study. Stats (Basel). 3, 343–355 (2020).

    Google Scholar 

  62. Gao, J. & Liu, W. Advances in screening of thalassaemia. Clin. Chim. Acta. 534, 176–184 (2022).

    Google Scholar 

  63. Zgodzińska, A. & Ciepiela, O. Osmotic fragility of red blood cells – a review of diagnostic methods. Diagnostyka Laboratoryjna. 51, 229–234 (2015).

    Google Scholar 

  64. Deska Pagana, K., Pagana, T. J. & Noel Pagana, T. Mosby’s Diagnostic and Laboratory Test Reference. (2019).

  65. Godal, H. C., Elde, A. T., Nyborg, N. & Brosstad, F. The normal range of osmotic fragility of red blood cells. Scand. J. Haematol. 25, 107–112 (1981).

    Google Scholar 

  66. Bland, J. M. & Altman, D. G. Agreement between methods of measurement with multiple observations per individual. J. Biopharm. Stat. 17, 571–582 (2007).

    Google Scholar 

  67. Wang, S., Solenov, E. I. & Yang, B. Aquaporin inhibitors. Adv. Exp. Med. Biol. 1398, 317–330 (2023).

    Google Scholar 

  68. Eisele, K. et al. Stimulation of erythrocyte phosphatidylserine exposure by mercury ions. Toxicol. Appl. Pharmacol. 210, 116–122 (2006).

    Google Scholar 

  69. Akkaya, B., Kucukal, E., Little, J. A. & Gurkan, U. A. Mercury leads to abnormal red blood cell adhesion to laminin mediated by membrane sulfatides. Biochim. Et Biophys. Acta (BBA) – Biomembr. 1861, 1162–1171 (2019).

    Google Scholar 

  70. Song, S. et al. Interaction of mercury ion (Hg2+) with blood and cytotoxicity Attenuation by serum albumin binding. J Hazard. Mater 412, (2021).

  71. Firat, I. S. Temperature-Dependent Osmotic Fragility Dataset in Human and Chicken Red Blood Cells. (2025).

  72. Kozono, D., Yasui, M., King, L. S. & Agre, P. Aquaporin water channels: atomic structure molecular dynamics Meet clinical medicine. J. Clin. Invest. 109, 1395–1399 (2002).

    Google Scholar 

  73. Voigtlaender, J., Heindl, B. & Becker, B. F. Transmembrane water influx via aquaporin-1 is inhibited by barbiturates and Propofol in red blood cells. Naunyn Schmiedebergs Arch. Pharmacol. 366, 209–217 (2002).

    Google Scholar 

  74. Hua, Y. et al. Physiological and pathological impact of AQP1 knockout in mice. Biosci. Rep. 39, 20182303 (2019).

    Google Scholar 

  75. De Ieso, M. L. et al. Combined pharmacological administration of AQP1 ion channel blocker AqB011 and water channel blocker Bacopaside II amplifies inhibition of colon cancer cell migration. Sci. Rep. 9, 1–17 (2019).

Download references