Biosurfactant-producing Bacillus spp. suppress Fusarium via fungal membrane disruption and promote cucumber growth

biosurfactant-producing-bacillus-spp.-suppress-fusarium-via-fungal-membrane-disruption-and-promote-cucumber-growth
Biosurfactant-producing Bacillus spp. suppress Fusarium via fungal membrane disruption and promote cucumber growth

References

  1. Saxena, A. K., Kumar, M., Anuroopa, N., Bagyaraj, D. J. & Chakdar, H. Bacillus species in soil as a natural resource for plant health and nutrition. J. Appl. Microbiol. 128, 1583–1594 (2019).

    Google Scholar 

  2. Lopes, R., Tsui, S., Gonçalves, P. J. R. & de Queiroz, M. V. A look into a multifunctional toolbox: endophytic Bacillus species provide broad and underexploited benefits for plants. World J. Microbiol. Biotechnol. 34, 1–10. https://doi.org/10.1007/s11274-018-2479-7 (2018).

    Google Scholar 

  3. Raymaekers, K., Ponet, L., Holtappels, D., Berckmans, B. & Cammue B.P.A. Screening for novel biocontrol agents applicable in plant disease management—A review. Biol. Control. 144, 104240 (2020).

    Google Scholar 

  4. Sulaiman, M. A. & Bello, S. K. Biological control of soil-borne pathogens in arid lands: a review. J. Plant. Dis. Prot. 131, 293–313. https://doi.org/10.1007/s41348-023-00824-7 (2024).

    Google Scholar 

  5. Fira, D., Dimkić, I., Berić, T., Lozo, J. & Stanković, S. Biological control of plant pathogens by Bacillus species. J. Biotechnol. 285, 44–55. https://doi.org/10.1016/j.jbiotec.2018.07.044 (2018).

    Google Scholar 

  6. El-Saadony, M. T. et al. Plant growth-promoting microorganisms as biocontrol agents of plant diseases: mechanisms, challenges and future perspectives. Front. Plant. Sci. 13, 923880. https://doi.org/10.3389/fpls.2022.923880 (2022).

    Google Scholar 

  7. Pecci, Y., Rivardo, F., Martinotti, M. G. & Allegrone, G. LC/ESI-MS/MS characterisation of lipopeptide biosurfactants produced by the Bacillus licheniformis V9T14 strain. J. Mass. Spectrom. 45, 772–778. https://doi.org/10.1002/jms.1767 (2010).

    Google Scholar 

  8. Bartal, A. et al. Effects of different cultivation parameters on the production of surfactin variants by a Bacillus subtilis strain. Molecules 23, 2675. https://doi.org/10.3390/molecules23102675 (2018).

    Google Scholar 

  9. Paraszkiewicz, K. et al. Agricultural potential of rhizospheric Bacillus subtilis strains exhibiting varied efficiency of surfactin production. Sci. Hortic. 225, 802–809 (2017).

    Google Scholar 

  10. Paraszkiewicz, K., Bernat, P., Kuśmierska, A., Chojniak, J. & Płaza, G. Structural identification of lipopeptide biosurfactants produced by Bacillus subtilis strains grown on media obtained from renewable natural resources. J. Environ. Manage. 209, 65–70. https://doi.org/10.1016/j.jenvman.2017.12.033 (2018).

    Google Scholar 

  11. Walaszczyk, A., Jasińska, A., Bernat, P., Płaza, G. & Paraszkiewicz, K. Microplastics influence on herbicides removal and biosurfactants production by a Bacillus sp. strain active against Fusarium culmorum. Sci. Rep. 13, 14618. https://doi.org/10.1038/s41598-023-41210-5 (2023).

    Google Scholar 

  12. Bakker, C. et al. Fungal membrane determinants affecting sensitivity to antifungal Cyclic lipopeptides from Bacillus spp. Fungal Biol. 128, 2080–2088. https://doi.org/10.1016/j.funbio.2024.08.006 (2024).

    Google Scholar 

  13. Diniz, G. F. D. et al. Chemical and genetic characterization of lipopeptides from Bacillus velezensis and Paenibacillus ottowii with activity against Fusarium verticillioides. Front. Microbiol. 15, 1443327 https://doi.org/10.3389/fmicb.2024.1443327 (2024).

  14. Mnif, I. & Ghribi, D. Lipopeptides biosurfactants: mean classes and new insights for industrial, biomedical, and environmental applications. Biopolymers 104, 129–147. https://doi.org/10.1002/bip.22630 (2015).

    Google Scholar 

  15. Ma, Y. et al. Identification of lipopeptides in Bacillus megaterium by two-step ultrafiltration and LC–ESI–MS/MS. AMB Express. 6, 1–9. https://doi.org/10.1186/s13568-016-0252-6 (2016).

    Google Scholar 

  16. Sharma, R., Singh, J. & Verma, N. Production, characterization and environmental applications of biosurfactants from Bacillus amyloliquefaciens and Bacillus subtilis. Biocatal. Agric. Biotechnol. 16, 132–139. https://doi.org/10.1016/j.bcab.2018.07.028 (2018).

    Google Scholar 

  17. Markelova, N. & Chumak, A. Antimicrobial activity of Bacillus Cyclic lipopeptides and their role in the host adaptive response to changes in environmental conditions. Int. J. Mol. Sci. 26, 336. https://doi.org/10.3390/ijms26010336 (2025).

    Google Scholar 

  18. Saiyam, D., Dubey, A., Malla, M. A. & Kumar, A. Lipopeptides from Bacillus: unveiling biotechnological prospects—sources, properties, and diverse applications. Braz J. Microbiol. 55, 281–295. https://doi.org/10.1007/s42770-023-01228-3 (2024).

    Google Scholar 

  19. Mihalache, G. et al. Lipopeptides produced by Bacillus subtilis as new biocontrol products against fusariosis in ornamental plants. Environ. Sci. Pollut Res. 25, 29784–29793. https://doi.org/10.1007/s11356-017-9162-7 (2017).

    Google Scholar 

  20. Wang, Y. et al. Surfactin and Fengycin B extracted from Bacillus pumilus W-7 provide protection against potato late blight via distinct and synergistic mechanisms. Appl. Microbiol. Biotechnol. 104, 7467–7481. https://doi.org/10.1007/s00253-020-10773-y (2020).

    Google Scholar 

  21. Datta, D. et al. Microbial biosurfactants: multifarious applications in sustainable agriculture. Microbiol. Res. 279, 127551. https://doi.org/10.1016/j.micres.2023.127551 (2024).

    Google Scholar 

  22. Chen, M. et al. Lipopeptides from Bacillus velezensis induced apoptosis-like cell death in the pathogenic fungus Fusarium concentricum. J. Appl. Microbiol. 135, lxae048. https://doi.org/10.1093/jambio/lxae048 (2024).

    Google Scholar 

  23. Jasińska, A., Soboń, A., Różalska, S. & Średnicka, P. Bisphenol A removal by the fungus Myrothecium roridum IM 6482—analysis of the cellular and subcellular level. Int. J. Mol. Sci. 22, 10676 (2021).

    Google Scholar 

  24. Jasińska, A., Różalska, S., Rusetskaya, V., Słaba, M. & Bernat, P. Microplastic-induced oxidative stress in metolachlor-degrading filamentous fungus Trichoderma Harzianum. Int. J. Mol. Sci. 23, 12978. https://doi.org/10.3390/ijms232112978 (2022).

    Google Scholar 

  25. Jain, D. K., Collins-Thompson, D. L., Lee, H. & Trevors, J. T. A drop-collapsing test for screening surfactant-producing microorganisms. J. Microbiol. Methods. 13, 271–279. https://doi.org/10.1016/0167-7012(91)90064-W (1991).

    Google Scholar 

  26. Salazar, B. et al. Bacillus spp. As bio-factories for antifungal secondary metabolites: innovation beyond whole organism formulations. Microb. Ecol. 86, 1–24. https://doi.org/10.1007/s00248-023-02175-w (2023).

    Google Scholar 

  27. Jasim, B., Sreelakshmi, K. S., Mathew, J. & Radhakrishnan, E. K. Surfactin, iturin, and Fengycin biosynthesis by endophytic Bacillus sp. from Bacopa monnieri. Microb. Ecol. 72, 106–119. https://doi.org/10.1007/s00248-016-0753-5 (2016).

    Google Scholar 

  28. Crouzet, J. et al. Biosurfactants in plant protection against diseases: rhamnolipids and lipopeptides case study. Front. Bioeng. Biotechnol. 8, 1014. https://doi.org/10.3389/fbioe.2020.01014 (2020).

    Google Scholar 

  29. Sharma, J., Sundar, D. & Srivastava, P. Biosurfactants: potential agents for controlling cellular communication, motility, and antagonism. Front. Mol. Biosci. 8, 727070. https://doi.org/10.3389/fmolb.2021.727070 (2021).

    Google Scholar 

  30. Kohlmeier, S. et al. Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ. Sci. Technol. 39, 4640–4646. https://doi.org/10.1021/es047979z (2005).

    Google Scholar 

  31. Ingham, C. J., Kalisman, O., Finkelshtein, A. & Ben-Jacob, E. Mutually facilitated dispersal between the nonmotile fungus Aspergillus fumigatus and the swarming bacterium Paenibacillus vortex. Proc. Natl. Acad. Sci. U S A. 108, 19731–19736. https://doi.org/10.1073/pnas.1102097108 (2011).

    Google Scholar 

  32. Haq, I. U., Zhang, M., Yang, P. & van Elsas, J. D. The interactions of bacteria with fungi in soil: emerging concepts. Adv. Appl. Microbiol. 89, 185–215. https://doi.org/10.1016/B978-0-12-800259-9.00005-6 (2014).

    Google Scholar 

  33. Liu, Y. et al. Membrane disruption and DNA binding of Fusarium graminearum cells induced by C16-fengycin A produced by Bacillus amyloliquefaciens. Food Control. 102, 206–213. https://doi.org/10.1016/j.foodcont.2019.03.031 (2019).

    Google Scholar 

  34. Andrić, S., Meyer, T. & Ongena, M. Bacillus responses to plant-associated fungal and bacterial communities. Front. Microbiol. 11, 1350. https://doi.org/10.3389/fmicb.2020.01350 (2020).

    Google Scholar 

  35. Cawoy, H. et al. Lipopeptides as main ingredients for Inhibition of fungal phytopathogens by. Bacillus subtilis/Amyloliquefaciens Microb. Biotechnol. 8, 281–295. https://doi.org/10.1111/1751-7915.12238 (2014).

    Google Scholar 

  36. Liu, Y. et al. Enhanced rhizosphere colonization of beneficial Bacillus amyloliquefaciens SQR9 by pathogen infection. FEMS Microbiol. Lett. 353, 49–56 (2014).

    Google Scholar 

  37. Chowdhury, S. P. et al. Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. Plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia Solani. Mol. Plant-Microbe Interact. 28, 984–995. https://doi.org/10.1094/MPMI-03-15-0066-R (2015).

    Google Scholar 

  38. Kulimushi, P. Z. et al. Stimulation of fengycin-type antifungal lipopeptides in Bacillus amyloliquefaciens in the presence of the maize fungal pathogen Rhizomucor variabilis. Front. Microbiol. 8, 850. https://doi.org/10.3389/fmicb.2017.00850 (2017).

    Google Scholar 

  39. Hirozawa, M. T. et al. Antifungal effect and selected properties of cell-free supernatants of two Bacillus subtilis isolates against Fusarium verticillioides. Braz J. Microbiol. 55, 1–12. https://doi.org/10.1007/s42770-024-01414-x (2024).

    Google Scholar 

  40. Zhao, H. et al. Cell-free supernatant of Bacillus velezensis suppresses mycelial growth and reduces virulence of Botrytis cinerea by inducing oxidative stress. Front. Microbiol. 13, 980022. https://doi.org/10.3389/fmicb.2022.980022 (2022).

    Google Scholar 

  41. Liu, J., Hagberg, I., Novitsky, L., Hadj-Moussa, H. & Avis, T. J. Interaction of antimicrobial Cyclic lipopeptides from Bacillus subtilis influences their effect on spore germination and membrane permeability in fungal plant pathogens. Fungal Biol. 118, 855–861. https://doi.org/10.1016/j.funbio.2014.07.004 (2014).

    Google Scholar 

  42. Wise, C., Falardeau, J., Hagberg, I. & Avis, T. J. Cellular lipid composition affects sensitivity of plant pathogens to fengycin, an antifungal compound produced by Bacillus subtilis strain CU12. Phytopathology 104, 1036–1041. https://doi.org/10.1094/PHYTO-12-13-0336-R (2014).

    Google Scholar 

  43. López-Bucio, J. et al. Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis Thaliana. Mol. Plant-Microbe Interact. 20, 207–217. https://doi.org/10.1094/MPMI-20-2-0207 (2007).

    Google Scholar 

  44. Batista, B. D. et al. The auxin-producing Bacillus Thuringiensis RZ2MS9 promotes growth and modifies the root architecture of tomato (Solanum lycopersicum cv. Micro-Tom). Arch. Microbiol. 203, 3869–3882. https://doi.org/10.1007/s00203-021-02361-z (2021).

    Google Scholar 

  45. Liu, J. et al. Effect of Bacillus paralicheniformis on soybean (Glycine max) root colonization, nutrient uptake and water use efficiency under drought stress. J. Agron. Crop Sci. 209, 547–565. https://doi.org/10.1111/jac.12639 (2023).

    Google Scholar 

  46. Jensen, C. N. G. et al. Bacillus subtilis promotes plant phosphorus acquisition through P solubilization and stimulation of root and root hair growth. Physiol. Plant. 176, e14338. https://doi.org/10.1111/ppl.14338 (2024).

    Google Scholar 

  47. Jensen, C. N. G. et al. Differential influence of Bacillus subtilis strains on Arabidopsis root architecture through common and distinct plant hormonal pathways. Plant. Sci. 339, 111936. https://doi.org/10.1016/j.plantsci.2023.111936 (2024).

    Google Scholar 

  48. Sharifi, R. & Ryu, C. M. Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future. Ann. Bot. 122, 349–358. https://doi.org/10.1093/aob/mcy108 (2018).

    Google Scholar 

  49. Mahapatra, S., Yadav, R. & Ramakrishna, W. Bacillus subtilis impact on plant growth, soil health and environment: Dr. Jekyll and Mr. Hyde. J. Appl. Microbiol. 132, e15480. https://doi.org/10.1111/jam.15480 (2022).

    Google Scholar 

  50. Duan, Y. et al. Isolation, identification, and antibacterial mechanisms of Bacillus amyloliquefaciens QSB-6 and its effect on plant roots. Front. Microbiol. 12, 746799. https://doi.org/10.3389/fmicb.2021.746799 (2021).

    Google Scholar 

  51. Pylak, M., Oszust, K. & Frąc, M. Review report on the role of bioproducts, biopreparations, biostimulants and microbial inoculants in organic production of fruit. Rev. Environ. Sci. Biotechnol. 18, 597–616. https://doi.org/10.1007/s11157-019-09500-5 (2019).

    Google Scholar 

Download references