Improved uranium bioleaching in brackish environments via microbial consortium using RSM based modelling and optimization

improved-uranium-bioleaching-in-brackish-environments-via-microbial-consortium-using-rsm-based-modelling-and-optimization
Improved uranium bioleaching in brackish environments via microbial consortium using RSM based modelling and optimization

References

  1. Tavakoli, H. Z., Abdollahy, M., Ahmadi, S. & Darban, A. K. Kinetics of uranium bioleaching in stirred and column reactors. Miner. Eng. 111, 36–46 (2017).

    Google Scholar 

  2. Kaksonen, A. H., Lakaniemi, A.-M. & Tuovinen, O. H. Acid and ferric sulfate bioleaching of uranium ores: A review. J. Clean. Prod. 264, 121586 (2020).

    Google Scholar 

  3. Pradhan, N., Nathsarma, K., Rao, K. S., Sukla, L. & Mishra, B. Heap bioleaching of chalcopyrite: A review. Miner. Eng. 21(5), 355–365 (2008).

    Google Scholar 

  4. Chen, W., Tang, H. & Yin, S. Bioleaching of low-grade copper sulfide enhanced by nutrients from sterilized medical waste. Process Saf. Environ. Protect. 188, 1527–1535 (2024).

    Google Scholar 

  5. Nagpal, S., Dahlstrom, D. & Oolman, T. Effect of carbon dioxide concentration on the bioleaching of a pyrite–arsenopyrite ore concentrate. Biotechnol. Bioeng. 41(4), 459–464 (1993).

    Google Scholar 

  6. Barron, J. L. & Lueking, D. R. Growth and maintenance of Thiobacillus ferrooxidans cells. Appl. Environ. Microbiol. 56(9), 2801–2806 (1990).

    Google Scholar 

  7. Schippers, A., Hetz, S. A. & Ostertag-Henning, C. Laterite ore processing with hydrogen via mild chemical pressure leaching or bioleaching. Hydrometallurgy https://doi.org/10.1016/j.hydromet.2025.106447 (2025).

    Google Scholar 

  8. Khetwunchai, N. et al. Enhanced bioleaching of copper and gold from waste printed circuit boards: Stepwise process, pretreatment strategies, metabolomics analysis, and the role of N8-acetylspermidine. Process Saf. Environ. Protect. 194, 289–305 (2025).

    Google Scholar 

  9. Dew, D. W., Lawson, F. & Broadhurst, J. L. The bioleaching of sulfide minerals with emphasis on copper sulfides a review. Hydrometallurgy 47, 155–170 (1997).

    Google Scholar 

  10. Rea, S. et al. Salt-tolerant microorganisms potentially useful for bioleaching operations where fresh water is scarce. Miner. Eng. 75, 126–132 (2015).

    Google Scholar 

  11. Simmons, S. F. & Norris, P. R. Acidophilic microorganisms and their interactions with minerals in saline environments. Extremophiles 6(6), 551–559 (2002).

    Google Scholar 

  12. Noguchi, H. & Okibe, N. The role of bioleaching microorganisms in saline water leaching of chalcopyrite concentrate. Hydrometallurgy 195, 105397 (2020).

    Google Scholar 

  13. Shivanand, P. & Mugeraya, G. Halophilic microorganisms and their adaptation mechanisms. Crit. Rev. Microbiol. 37(4), 315–334 (2011).

    Google Scholar 

  14. Oren, A. Life at high salt concentrations, intracellular KCl concentrations, and acidic proteomes. Front. Microbiol. 4, 315 (2013).

    Google Scholar 

  15. Graziano, G. & Merlino, A. Molecular bases of protein halotolerance. Biochimica et Biophysica Acta (BBA) 1844(4), 850–858 (2014).

    Google Scholar 

  16. Fournier, D., Lemieux, R. & Couillard, D. Essential interactions between Thiobacillus ferrooxidans and heterotrophic microorganisms during a wastewater sludge bioleaching process. Environ. Pollut. 101(2), 303–309 (1998).

    Google Scholar 

  17. Gu, X.-Y. & Wong, J. W. Degradation of inhibitory substances by heterotrophic microorganisms during bioleaching of heavy metals from anaerobically digested sewage sludge. Chemosphere 69(2), 311–318 (2007).

    Google Scholar 

  18. Zheng, G., Zhou, L. & Wang, S. An acid-tolerant heterotrophic microorganism role in improving tannery sludge bioleaching conducted in successive multibatch reaction systems. Environ. Sci. Technol. 43(11), 4151–4156 (2009).

    Google Scholar 

  19. Tavakoli, H. Z., Abdollahy, M., Ahmadi, S. & Darban, A. K. Enhancing recovery of uranium column bioleaching by process optimization and kinetic modeling. Trans. Nonferrous Met. Soc. China 27(12), 2691–2703 (2017).

    Google Scholar 

  20. Bomberg, M., Mäkinen, J., Salo, M. & Kinnunen, P. High diversity in iron cycling microbial communities in acidic, iron‐rich water of the Pyhäsalmi Mine, Finland. Geofluids 2019(1), 7401304 (2019).

    Google Scholar 

  21. Piroeva, I. et al. A simple and rapid scanning electron microscope preparative technique for observation of biological samples: application on bacteria and DNA samples. Bulg. Chem. Commun 45(4), 510–515 (2013).

    Google Scholar 

  22. Csonka, L. N. Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev. 53(1), 121–147 (1989).

    Google Scholar 

  23. Kieft, T. L. & Spence, S. D. Osmoregulation in Thiobacillus ferrooxidans: Stimulation of iron oxidation by proline and betaine under salt stress. Curr. Microbiol. 17, 255–258 (1988).

    Google Scholar 

  24. Guo, X. et al. Role of proline biosynthesis in Acidithiobacillus caldus under salt stress. J. Bacteriol. 195, 4421–4429 (2013).

    Google Scholar 

  25. Zammit, C. M. et al. Bioleaching in brackish waters—effect of chloride ions on the acidophile population and proteomes of model species. Appl. Microbiol. Biotechnol. 93, 319–329 (2012).

    Google Scholar 

  26. Simmons, S. & Norris, P. Acidophiles of saline water at thermal vents of Vulcano, Italy. Extremophiles 6, 201–207 (2002).

    Google Scholar 

  27. Sand, W. et al. Microbial mechanisms for metal leaching in acidic environments. Hydrometallurgy 59(3), 159 (2001).

    Google Scholar 

  28. Zheng, X. & Li, D. Interaction of Acidithiobacillus ferrooxidans, Rhizobium phaseoli and Rhodotorula sp. in bioleaching process based on Lotka-Volterra model. Electron. J. Biotechnol. 22, 90–97 (2016).

    Google Scholar 

  29. Ingledew, W. J. Thiobacillus ferrooxidans the bioenergetics of an acidophilic chemolithotroph. Biochimica et Biophysica Acta (BBA) 683(2), 89–117 (1982).

    Google Scholar 

  30. Salinas, E. et al. Removal of cadmium and lead from dilute aqueous solutions by Rhodotorula rubra. Bioresour. Technol. 72(2), 107–112 (2000).

    Google Scholar 

Download references