References
-
Ahmad, M. H., Safdar, S., Kousar, S., Nadeem, M. & Asghar, Z. Functional foods and human health: An overview. Funct. Foods Phytochem. Health Promot. Potential https://doi.org/10.5772/intechopen.99000 (2021).
-
Gupta, E. & Mishra, P. Functional food with some health benefits, so called superfood: A review. Curr. Nutr. Food Sci. 17, 144–166. https://doi.org/10.2174/1573401316666200414150523 (2021).
-
Granado-Lorencio, F. & Hernández-Álvarez, E. Functional foods and health effects: A nutritional biochemistry perspective. Curr. Med. Chem. 23, 2929–2957. https://doi.org/10.2174/0929867323666160615105746 (2016).
-
Cartea, M. E., Francisco, M., Soengas, P. & Velasco, P. Phenolic compounds in Brassica vegetables. Molecules 16, 251–280. https://doi.org/10.3390/molecules16010251 (2011).
-
Sharma, R., Kumar, S., Kumar, V. & Thakur, A. Comprehensive review on nutraceutical significance of phytochemicals as functional food ingredients for human health management. J. Pharmacogn. Phytochem. 8, 385–395. https://doi.org/10.22271/phyto.2019.v8.i5h.9589 (2019).
-
Gómez-Campo, C. Morphology and morphotaxonomy of the Tribe Brassiceae. In Brassica Crops and Wild Allies, eds Tsunoda, S., Hinata, K. & Gómez-Campo, C. pp. 3–31 (Japan Scientific Societies Press, 1980).
-
Singh, A., Sharma, S. & Dolly. Radish. In Antioxidants in Vegetables and Nuts—Properties and Health Benefits, pp. 209–235 (Springer, 2020). https://doi.org/10.1007/978-981-15-7470-2_10
-
Gamba, M. et al. Nutritional and phytochemical characterization of radish (Raphanus sativus): A systematic review. Trends Food Sci. Technol. 113, 205–218. https://doi.org/10.1016/j.tifs.2021.04.045 (2021).
-
Manivannan, A., Kim, J. H., Kim, D. S., Lee, E. S. & Lee, H. E. Deciphering the nutraceutical potential of Raphanus sativus—a comprehensive overview. Nutrients 11(2), 402. https://doi.org/10.3390/nu11020402 (2019).
-
Singh, R., Avasthe, R., Babu, S., Yadav, G. S. & Kumar, A. (eds) Climate Resilient Cropping Systems for Sikkim[Technical Bulletin]. ICAR-National Organic Farming Research Institute, Tech. Bull. 2021/01 (2021).
-
Di Renzo, L., De Lorenzo, A., Merra, G. & Gualtieri, P. Comment on: “A systematic review of organic versus conventional food consumption: Is there a measurable benefit on human health? Nutrients. Nutrients 12, 696. https://doi.org/10.3390/nu12030696 (2020).
-
Czech, A., Szmigielski, M. & Sembratowicz, I. Nutritional value and antioxidant capacity of organic and conventional vegetables of the genus Allium. Sci. Rep. 12, 18713. https://doi.org/10.1038/s41598-022-23497-y (2022).
-
Rubatzky, V. E. & Yamaguchi, M. World Vegetables: Principles, Production and Nutritive Values 2nd edn. (Chapman & Hall, UK, 1997). https://doi.org/10.1007/978-1-4615-6015-9.
-
Crisp, P. Radish, Raphanus sativus (Cruciferae). In Evolution of Crop Plants, 2nd edn., eds Smartt, J. & Simmonds, N. W. pp. 86–89 (Longman Scientific & Technical, 1995).
-
Van Bueren, E. L. et al. The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: A review. NJAS Wageningen J. Life Sci. 58, 193–205. https://doi.org/10.1016/j.njas.2010.04.001 (2011).
-
Yang, Q. Radish genetic resources. Genebank Platform, CGIAR. (2019).
-
Singh, B. K. Radish (Raphanus sativus L.): Breeding for higher yield, better quality and wider adaptability. In Advances in Plant Breeding Strategies: Vegetable Crops: Volume 8, Bulbs, Roots and Tubers, pp. 275–304 (Springer, 2021). https://doi.org/10.1007/978-3-030-66965-2_7
-
Federer, W. T. Augmented (or Hoonuiaku) designs. Hawaiian Planters’ Record 55, 191–208 (1956).
-
Lin, C. S. & Poushinsky, G. A modified augmented design for an early stage of plant selection involving a large number of test lines without replication. Biometrics 39, 553–561. https://doi.org/10.2307/2531083 (1983).
-
Nowosad, K., Liersch, A., Popławska, W. & Bocianowski, J. Genotype by environment interaction for seed yield in rapeseed (Brassica napus L.) using additive main effects and multiplicative interaction model. Euphytica 208, 187–194. https://doi.org/10.1007/s10681-015-1620-z (2016).
-
Kang, M. S. Using genotype-by-environment interaction for crop cultivar development. Adv. Agron. 62, 199–252. https://doi.org/10.1016/S0065-2113(08)60569-6 (1997).
-
Borule, T. et al. Analysis of yield stability in diverse rice genotypes. J. Adv. Biol. Biotechnol. 27, 79–89. https://doi.org/10.9734/JABB/2024/v27i2701 (2024).
-
Meena, V. K., Sharma, R. K., Chand, S., Kumar, S. & Choudhary, K. Comparative study of stability models for identifying stable spring wheat genotypes in diverse conditions. Discov. Agric. 3, 1–24. https://doi.org/10.1007/s44279-025-00167-x (2025).
-
Anshori, M. F. et al. A comprehensive multivariate approach for GxE interaction analysis in early maturing rice varieties. Front. Plant Sci. 15, 1462981. https://doi.org/10.3389/fpls.2024.1462981 (2024).
-
Piepho, H. P., Möhring, J., Melchinger, A. E. & Büchse, A. BLUP for phenotypic selection in plant breeding and variety testing. Euphytica 161, 209–228. https://doi.org/10.1007/s10681-007-9449-8 (2008).
-
Pathy, T. L. & Mohanraj, K. Estimating best linear unbiased predictions (BLUP) for yield and quality traits in sugarcane. Sugar Tech. 23, 1295–1305. https://doi.org/10.1007/s12355-021-01011-4 (2021).
-
Rabiei, B., Valizadeh, M., Ghareyazie, B. & Moghaddam, M. Evaluation of selection indices for improving rice grain shape. Field Crops Res. 89, 359–367. https://doi.org/10.1016/j.fcr.2004.02.016 (2004).
-
Jackson, M. L. Soil Chemical Analysis (Prentice Hall of India, India, 1973).
-
Walkley, A. & Black, I. A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–38. https://doi.org/10.1097/00010694-193401000-00003 (1934).
-
Subbaiah, B. V. & Asija, G. L. A rapid procedure for the estimation of available nitrogen in soil. Curr. Sci. 25, 258–260 (1956).
-
Bray, R. H. & Kurtz, L. T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59, 39–46. https://doi.org/10.1097/00010694-194501000-00006 (1945).
-
Metson, A. J. Methods of chemical analysis for soil survey samples, Soil Bureau Bulletin No. 12, 208 pp. (New Zealand Dept. of Scientific and Industrial Research, 1956).
-
Association of Official Analytical Chemists & Cunniff, P. Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed. (AOAC International, 1990).
-
Ebell, L. F. Variation in total soluble sugars of conifer tissues with method of analysis. Phytochemistry 8, 227–233. https://doi.org/10.1016/S0031-9422(00)85818-5 (1969).
-
Teixeira, G. G. & Santos, P. M. Simple and cost-effective approaches for quantification of reducing sugar exploiting digital image analysis. J. Food Compos. Anal. 113, 104719. https://doi.org/10.1016/j.jfca.2022.104719 (2022).
-
Mushtaq, M. W. et al. Spectrophotometric determination of Vitamin C in underground vegetables and kinetic modelling to probe the effect of temperature and pH on degradation of Vitamin C. Pak. J. Bot. 54(5), 1771–1775 (2022).
-
Braniša, J., Jenisová, Z., Porubská, M., Jomová, K. & Valko, M. Spectrophotometric determination of chlorophylls and carotenoids: an effect of sonication and sample processing. J. Microbiol. Biotechnol. Food Sci. 3, 61–64 (2014).
-
Pérez-Patricio, M. et al. Optical method for estimating the chlorophyll contents in plant leaves. Sensors 18, 650. https://doi.org/10.3390/s18020650 (2018).
-
Oyaizu, M. Studies on products of browning reaction: antioxidative activities of products of browning reaction prepared from glucosamine. Jap. J. Nutr. Dietet. 44, 307–315. https://doi.org/10.5264/eiyogakuzashi.44.307 (1986).
-
Jelodarian, S., Ebrahimabadi, A. H., Khalighi, A. & Batooli, H. Evaluation of antioxidant activity of Malus domestica fruit extract from Kashan area. Avicenna J. Phytomed. 2, 139 (2012).
-
Official Methods of Analysis, 18th edn. AOAC INTERNATIONAL (2005).
-
Official Methods of Analysis, 21st edn., Appendix D [Appendix]. AOAC INTERNATIONAL (2020). http://eoma.aoac.org/app_d.pdf
-
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6 (1951).
-
Gallik, S. Determination of the anthocyanin concentration in table wines and fruit juices using visible light spectrophotometry. Cell Biol. 2, 1–12 (2012).
-
Keser, S., Celik, S., Turkoglu, S., Yilmaz, O. & Turkoglu, I. Hydrogen peroxide radical scavenging and total antioxidant activity of hawthorn. Chem. J. 2, 9–12 (2012).
-
Tamboli, F. A. et al. Estimation of total carbohydrate content by phenol sulphuric acid method from Eichhornia crassipes (Mart.) Solms. Asian J. Res. Chem. 13(5), 357–359. https://doi.org/10.5958/0974-4150.2020.00067.X (2020).
-
Lin, Y. T., Liang, C. & Chen, J. H. Feasibility study of ultraviolet activated persulfate oxidation of phenol. Chemosphere 82, 1168–1172. https://doi.org/10.1016/j.chemosphere.2010.12.027 (2011).
-
Panse, V. G. & Sukhatme, P. V. Statistical methods for agricultural workers, 4th edn., p. 347 (ICAR, 1984).
-
Burton, G. W. & De Vane, D. E. Estimating heritability in tall fescue (Festuca arundinacea) from replicated clonal material. Agron. J. 45, 478–481. https://doi.org/10.2134/agronj1953.00021962004500100005x (1953).
-
Johnson, H. W., Robinson, H. F. & Comstock, R. E. Estimates of genetic and environmental variability in soybeans. Agron. J. 47, 314–318. https://doi.org/10.2134/agronj1955.00021962004700070009X (1955).
-
Hanson, C. H., Robinson, H. F. & Comstock, R. E. Biometrical studies of yield in segregating populations of Korean lespedeza. Agron. J. 48, 268–272. https://doi.org/10.2134/agronj1956.00021962004800060008x (1956).
-
Lush, J. L. Heritability of quantitative characters in farm animals. Proc. 8 th Int. Congress Genet. 1948, 356–375 (1949).
-
Al-Jibouri, H., Miller, P. A. & Robinson, H. F. Genotypic and environmental variances and covariances in an upland cotton cross of interspecific origin. Agron. J. 50, 633–636. https://doi.org/10.2134/agronj1958.00021962005000100020x (1958).
-
Searle, S. R. Phenotypic, genetic and environmental correlations. Biometrics 17, 474–480. https://doi.org/10.2307/2527838 (1961).
-
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).
-
Smith, H. F. A discriminant function for plant selection. Ann. Eugenics 7, 240–250. https://doi.org/10.1111/j.1469-1809.1936.tb02143.x (1936).
-
Samyuktha, S. M., Geethanjali, S. & Bapu, J. R. Genetic diversity and correlation studies in chickpea (Cicer arietinum L.) based on morphological traits. Electron. J. Plant Breed. 8, 874–884 (2017).
-
Singh, B. K. et al. Pigmented radish (Raphanus sativus): Genetic variability, heritability and inter-relationships of total phenolics, anthocyanins and antioxidant activity. Indian J. Agric. Sci. 87, 1600–1606 (2017).
-
Lone, R. A. et al. Genetic variability and correlation studies in winter wheat (Triticum aestivum L.) germplasm for morphological and biochemical characters. Int. J. Pure Appl. Biosci. 5, 82–91. https://doi.org/10.18782/2320-7051.2489 (2017).
-
Fufa, N., Tsagaye, D., Ali, A., Wegayehu, G. & Fikre, D. Assessing genetic variability and heritability in garlic (Allium sativum L.) genotypes for bulb yield and related traits. Cross Curr. Int. J. Agric. Vet. Sci. 7, 1–8; https://doi.org/10.36344/ccijavs.2025.v07i01.001 (2025).
-
Manzoor, A. et al. Morphological characterization and analysis of genetic variability in radish (Raphanus sativus) genotypes for important qualitative and quantitative traits. Brazil. Arch. Biol. Technol. 67, e24230627. https://doi.org/10.1590/1678-4324-2024230627 (2024).
-
Lawal, B., Shittu, O. K., Oibiokpa, F. I. & Mohammed, H. African natural products with potential antioxidants and hepatoprotective properties: A review. Clin. Phytosci. 2, 23. https://doi.org/10.1186/s40816-016-0037-0 (2016).
-
Das, A. K. et al. A comprehensive review on antioxidant dietary fibre enriched meat-based functional foods. Trends Food Sci. Technol. 99, 323–336. https://doi.org/10.1016/j.tifs.2020.03.010 (2020).
-
Zeng, Y. et al. Preventive and therapeutic role of functional ingredients of barley grass for chronic diseases in human beings. Oxidative Med. Cell. Longevity 2018, 3232080. https://doi.org/10.1155/2018/3232080 (2018).
-
Rolland, F., Moore, B. & Sheen, J. Sugar sensing and signaling in plants. Plant Cell 14, 185–205. https://doi.org/10.1105/tpc.010455 (2002).
-
Thomas, J. A., Jeffrey, A. C., Atsuko, K. & David, M. K. Regulating the proton budget of higher plant photosynthesis. Proc. Natl. Acad. Sci. USA 102, 9709–9713. https://doi.org/10.1073/pnas.0503952102 (2005).
-
Rodriguez-Saona, L. E., Giusti, M. M. & Wrolstad, R. E. Anthocyanin pigment composition of red-fleshed potatoes. J. Food Sci. 63, 458–465. https://doi.org/10.1111/j.1365-2621.1998.tb15764.x (1998).
-
Khoo, H. E., Azlan, A., Tang, S. T. & Lim, S. M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 61, 1361779. https://doi.org/10.1080/16546628.2017.1361779 (2017).
-
Mezzomo, N. & Ferreira, S. R. Carotenoids functionality, sources, and processing by supercritical technology: A review. J. Chem. 2016, 3164312. https://doi.org/10.1155/2016/3164312 (2016).
-
Xiao, S. & Li, J. Study on functional components of functional food based on food vitamins. In Journal of Physics: Conference Series, Vol. 1549, No. 3, p. 032002 (IOP Publishing, 2020). https://doi.org/10.1088/1742-6596/1549/3/032002
-
Lutz, M., Fuentes, E., Ávila, F., Alarcón, M. & Palomo, I. Roles of phenolic compounds in the reduction of risk factors of cardiovascular diseases. Molecules 24, 366. https://doi.org/10.3390/molecules24020366 (2019).
-
Kurina, A. B., Kornyukhin, D. L., Solovyeva, A. E. & Artemyeva, A. M. Genetic diversity of phenotypic and biochemical traits in VIR radish (Raphanus sativus L.) germplasm collection. Plants 10, 1799 (2021).
-
Iloki-Assanga, S. B. et al. Solvent effects on phytochemical constituent profiles and antioxidant activities, using four different extraction formulations for analysis of Bucida buceras L. and Phoradendron californicum. BMC. Res. Notes 8(1), 396. https://doi.org/10.1186/s13104-015-1388-1 (2015).
-
Kuperman, F. M. & Kalacheva, L. I. The morphological and physiological classification of Raphanus sativus. Vestn. Sel’skokhozyaistvennoi Nauki 11, 37–43 (1972).
-
Lee, O. N. & Park, H. Y. Assessment of genetic diversity in cultivated radishes (Raphanus sativus) by agronomic traits and SSR markers. Sci. Hortic. 223, 19–30. https://doi.org/10.1016/j.scienta.2017.05.025 (2017).
-
Tsehaye, A., Fikre, A. & Bantayhu, M. Genetic variability and association analysis of Desi-type chickpea (Cicer arietinum L.) advanced lines under potential environment in North Gondar, Ethiopia. Cogent Food Agric. 6(1), 1806668. https://doi.org/10.1080/23311932.2020.1806668 (2020).
-
Singh, B. et al. Genetic association analysis in Asiatic radish (Raphanus sativus L.). Indian J. Plant Genet. Resour. 15, 121–124 (2002).
-
Singh, A. K., Ahmed, N. & Narayan, R. Genetic variability and characters association in radish under temperate conditions. Haryana J. Hort. Sci. 34, 346–384 (2005).
-
Ullah, M. Z., Hasan, M. J., Rahman, A. H. & Saki, A. I. Genetic variability, character association and path coefficient analysis in radish (Raphanus sativus L.). Agric. 8, 22–27. https://doi.org/10.3329/agric.v8i2.7573 (2010).
-
Yousuf, M., Ajmal, S. U., Munir, M. & Ghafoor, A. Genetic diversity analysis for agro-morphological and seed quality traits in rapeseed (Brassica campestris L.). Pak. J. Bot. 43, 1195–1203 (2011).
-
Huang, T. et al. Evaluation of genetic variation of morphological and clubroot-resistance traits of radish and metabonomic analysis of clubroot-resistant cultivar. Sci. Hortic. 321, 112272. https://doi.org/10.1016/j.scienta.2023.112272 (2023).
-
Mohammadi, S. A. & Prasanna, B. M. Analysis of genetic diversity in crop plants—salient statistical tools and considerations. Crop Sci. 43, 1235–1248. https://doi.org/10.2135/cropsci2003.1235 (2003).
-
Raihan, M. S. & Jahan, N. A. Genetic variability assessment in selected genotypes of radish (Raphanus sativus L.) using morphological markers. J. Res. Opinion 6, 2495–2501 (2019).
-
Ali, S. et al. Groundnut genotypes’ diversity assessment for yield and oil quality traits through multivariate analysis. SABRAO J. Breed. Genet. 54, 565–573. https://doi.org/10.54910/sabrao2022.54.3.9 (2022).
-
George, R. A. T. & Evans, D. R. A classification of winter radish cultivars. Euphytica 30, 483–492. https://doi.org/10.1007/BF00034013 (1981).
-
Saroj, R. et al. Unraveling the relationship between seed yield and yield-related traits in a diversity panel of Brassica juncea using multi-traits mixed model. Front. Plant Sci. 12, 651936. https://doi.org/10.3389/fpls.2021.651936 (2021).
-
Tudu, V. K., Kumar, A. & Rani, V. Assessment of genetic divergence in Indian mustard (Brassica juncea L. Czern. & Coss.) based on yield-attributing traits. J. Pharmacogn. Phytochem. 7(1S), 2093–2096. https://doi.org/10.3329/bjb.v50i1.52669 (2018).
-
Ahmad, R., Shah, M. K., Ibrar, D., Javaid, R. A. & Khan, N. Assessment of genetic divergence and its utilization in hybrid development in cultivated onion (Allium cepa L.). J. Anim. Plant Sci. 31, 175–187 (2021).
-
Hassan, Z. et al. Phenotypic characterization of exotic tomato germplasm: An excellent breeding resource. PLoS ONE 16, e0253557. https://doi.org/10.1371/journal.pone.0253557 (2021).
-
Wu, X. et al. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J. Agri. Food Chem. 52(12), 4026–4037. https://doi.org/10.1021/jf049696w (2004).
-
Kallithraka, S., Mohdaly, A. A., Makris, D. P. & Kefalas, P. Determination of major anthocyanin pigments in Hellenic native grape varieties (Vitis vinifera): Association with antiradical activity. J. Food Compos. Anal. 18, 375–386. https://doi.org/10.1016/j.jfca.2004.02.010 (2005).
-
Zoecklein, B. W., Fugelsang, K. C., Gump, B. H. & Nury, F. S. Carbohydrates: reducing sugars. In Production Wine Analysis, pp. 114–128 (Springer, 1990). https://doi.org/10.1007/978-1-4615-8146-8_6
-
Khatri, D. & Chhetri, S. B. B. Reducing sugar, total phenolic content, and antioxidant potential of Nepalese plants. Biomed Res. Int. 2020, 7296859. https://doi.org/10.1155/2020/7296859 (2020).
-
Kar, P. K., Srivastava, P. P., Awasthi, A. K. & Urs, S. R. Genetic variability and association of ISSR markers with some biochemical traits in mulberry (Morus spp.) genetic resources available in India. Tree Genet. Genomes 4, 75–83. https://doi.org/10.1007/s11295-007-0089-x (2008).
-
Khodadadi, M., Dehghani, H., Fotokian, M. H. & Rain, B. Genetic diversity and heritability of chlorophyll content and photosynthetic indexes among some Iranian wheat genotypes. J. Biodiv. Environ. Sci. 4, 12–23 (2014).
-
Luximon-Ramma, A., Bahorun, T. & Crozier, A. Antioxidant actions and phenolic and vitamin C contents of common Mauritian exotic fruits. J. Sci. Food Agric. 83, 496–502. https://doi.org/10.1002/jsfa.1365 (2003).
-
Pathak, R., Singh, M. & Henry, A. Genetic diversity and interrelationship among clusterbean (Cyamopsis tetragonoloba) genotypes for qualitative traits. Indian J. Agric. Sci. 81, 402–406 (2011).
-
Ebdon, J. S. & Gauch, H. G. Additive main effect and multiplicative interaction analysis of national turfgrass performance trials: I. Interpretation of genotype × environment interaction. Crop Sci. 42, 489–496. https://doi.org/10.2135/cropsci2002.4890 (2002).
-
Mustapha, M. & Bakari, H. R. Statistical evaluation of genotype by environment interactions for grain yield in millet (Pennisetum glaucum (L.) R. Br.). Int. J. Eng. Sci. 3, 7–16 (2014).
-
Mohamed, M. Genotype by environment interactions for grain yield in bread wheat (Triticum aestivum L.). J. Plant Breed. Crop Sci. 5, 150–157. https://doi.org/10.5897/JPBCS2013.0390 (2013).
-
Strefeler, M. S. & Wehner, T. C. Comparison of six methods of multiple trait selection for fruit yield and quality traits in three fresh-market cucumber populations. J. Amer. Soc. Hort. Sci. 111, 792–798 (1986).
-
Mallikarjunarao, K., Singh, P. K., Vaidya, A., Pradhan, R. & Das, R. K. Genetic variability and selection parameters for different genotypes of radish (Raphanus sativus L.) under Kashmir valley. Ecol. Environ. Conserv. 21, 361–364 (2015).
-
Fayezizadeh, M. R., Ansari, N. A., Sourestani, M. M. & Hasanuzzaman, M. Biochemical compounds, antioxidant capacity, leaf color profile and yield of basil (Ocimum sp.) microgreens in floating system. Plants 12, 2652 (2023).
-
Milligan, S. B. & Kang, M. S. A mixed-model approach. In Crop Improvement: Challenges in the Twenty-First Century, p. 353 (Publisher—check edition; 2024).
