Molecular tension indicators reveal unexpectedly complex regulation of tension in live mouse organs

molecular-tension-indicators-reveal-unexpectedly-complex-regulation-of-tension-in-live-mouse-organs
Molecular tension indicators reveal unexpectedly complex regulation of tension in live mouse organs

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information. Plasmids generated in this study have been deposited in Addgene under accession codes: 252385 and 252386. Uncropped and unedited images of blots and gels are available in the Supplementary Information. Numerical source data for graphs and charts can be found in Supplementary Data 1. All other data are available from the corresponding author upon reasonable request.

References

  1. Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010).

    Google Scholar 

  2. LaCroix, A. S., Lynch, A. D., Berginski, M. E. & Hoffman, B. D. Tunable molecular tension sensors reveal extension-based control of vinculin loading. eLife 7, e33927 (2018).

    Google Scholar 

  3. Déjardin, T. et al. Nesprins are mechanotransducers that discriminate epithelial–mesenchymal transition programs. J. Cell Biol. 219, e201908036 (2020).

    Google Scholar 

  4. Kim, T.-J. et al. Dynamic visualization of α-catenin reveals rapid, reversible conformation switching between tension states. Curr. Biol. 25, 218–224 (2015).

    Google Scholar 

  5. Kumar, A. et al. Talin tension sensor reveals novel features of focal adhesion force transmission and mechanosensitivity. J. Cell Biol. 213, 371–383 (2016).

    Google Scholar 

  6. Lagendijk, A. K. et al. Live imaging molecular changes in junctional tension upon VE-cadherin in zebrafish. Nat. Commun. 8, 1402 (2017).

    Google Scholar 

  7. Morimatsu, M., Mekhdjian, A. H., Adhikari, A. S. & Dunn, A. R. Molecular tension sensors report forces generated by single integrin molecules in living cells. Nano Lett. 13, 3985–3989 (2013).

    Google Scholar 

  8. Yamashita, S., Tsuboi, T., Ishinabe, N., Kitaguchi, T. & Michiue, T. Wide and high resolution tension measurement using FRET in embryo. Sci. Rep. 6, 28535 (2016).

    Google Scholar 

  9. Lemke, S. B., Weidemann, T., Cost, A.-L., Grashoff, C. & Schnorrer, F. A small proportion of Talin molecules transmit forces at developing muscle attachments in vivo. PLOS Biol. 17, e3000057 (2019).

    Google Scholar 

  10. Wang, J. et al. In situ FRET measurement of cellular tension using conventional confocal laser microscopy in newly established reporter mice expressing actinin tension sensor. Sci. Rep. 13, 22729 (2023).

    Google Scholar 

  11. Sanfeliu-Cerdán, N., Lin, L.-C., Dunn, A. R., Goodman, M. B. & Krieg, M. Visualizing neurons under tension in vivo with optogenetic molecular force sensors. Methods Mol. Biol. 2600, 239–266 (2023).

    Google Scholar 

  12. Eder, D., Basler, K. & Aegerter, C. M. Challenging FRET-based E-Cadherin force measurements in Drosophila. Sci. Rep. 7, 13692 (2017).

    Google Scholar 

  13. Ham, T. R., Collins, K. L. & Hoffman, B. D. Molecular tension sensors: moving beyond force. Curr. Opin. Biomed. Eng. 12, 83–94 (2019).

    Google Scholar 

  14. Baird, G. S., Zacharias, D. A. & Tsien, R. Y. Circular permutation and receptor insertion within green fluorescent proteins. Proc. Natl. Acad. Sci. 96, 11241–11246 (1999).

    Google Scholar 

  15. Nakai, J., Ohkura, M. & Imoto, K. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat. Biotechnol. 19, 137–141 (2001).

    Google Scholar 

  16. Ohkura, M. et al. Genetically encoded green fluorescent Ca2+ indicators with improved detectability for neuronal Ca2+ signals. PLoS ONE 7, e51286 (2012).

    Google Scholar 

  17. Yonemura, S., Wada, Y., Watanabe, T., Nagafuchi, A. & Shibata, M. α-Catenin as a tension transducer that induces adherens junction development. Nat. Cell Biol. 12, 533–542 (2010).

    Google Scholar 

  18. Maki, K. et al. Mechano-adaptive sensory mechanism of α-catenin under tension. Sci. Rep. 6, 24878 (2016).

    Google Scholar 

  19. Meng, F. & Sachs, F. Visualizing dynamic cytoplasmic forces with a compliance-matched FRET sensor. J. Cell Sci. 124, 261–269 (2011).

    Google Scholar 

  20. Várkuti, B. H. et al. A highly soluble, non-phototoxic, non-fluorescent blebbistatin derivative. Sci. Rep. 6, 26141 (2016).

    Google Scholar 

  21. Aberle, H. et al. Assembly of the cadherin-catenin complex in vitro with recombinant proteins. J. Cell Sci. 107, 3655–3663 (1994).

    Google Scholar 

  22. Pokutta, S. & Weis, W. I. Structure of the dimerization and β-catenin- binding region of α-catenin. Mol. Cell 5, 533–543 (2000).

    Google Scholar 

  23. Tu, Y., Pal, K., Austin, J. & Wang, X. Filopodial adhesive force in discrete nodes revealed by integrin molecular tension imaging. Curr. Biol. 32, 4386–4396.e3 (2022).

    Google Scholar 

  24. Hippenmeyer, S. et al. Genetic mosaic dissection of Lis1 and Ndel1 in neuronal migration. Neuron 68, 695–709 (2010).

    Google Scholar 

  25. Jiao, K. et al. An essential role of Bmp4 in the atrioventricular septation of the mouse heart. Genes Dev. 17, 2362–2367 (2003).

    Google Scholar 

  26. Niwa, H. et al. An efficient gene-trap method using poly A trap vectors and characterization of gene-trap events1. J. Biochem. 113, 343–349 (1993).

    Google Scholar 

  27. Horiguchi, M. et al. Fibulin-4 conducts proper elastogenesis via interaction with cross-linking enzyme lysyl oxidase. Proc. Natl. Acad. Sci. 106, 19029–19034 (2009).

    Google Scholar 

  28. Dietz, H. & Rief, M. Exploring the energy landscape of GFP by single-molecule mechanical experiments. Proc. Natl. Acad. Sci. 101, 16192–16197 (2004).

    Google Scholar 

  29. Mickler, M. et al. Revealing the bifurcation in the unfolding pathways of GFP by using single-molecule experiments and simulations. Proc. Natl. Acad. Sci. 104, 20268–20273 (2007).

    Google Scholar 

  30. Fischer, L. S., Rangarajan, S., Sadhanasatish, T. & Grashoff, C. Molecular force measurement with tension sensors. Annu. Rev. Biophys. 50, 595–616 (2021).

    Google Scholar 

  31. Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

    Google Scholar 

  32. Yin, J. et al. Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase. Proc. Natl. Acad. Sci. 102, 15815–15820 (2005).

    Google Scholar 

  33. Matsuda, A., Schermelleh, L., Hirano, Y., Haraguchi, T. & Hiraoka, Y. Accurate and fi ducial-marker-free correction forthree-dimensional chromatic shift in biological fl uorescence microscopy. Sci. Rep. 8, 7583 (2018).

Download references

Acknowledgements

We thank N. Watanabe (Kyoto University, Kyoto, Japan), S.H. Yoshimura (Kyoto University, Kyoto, Japan), Y. Kamioka (Kansai Medical University, Osaka, Japan) and S. Hirano (Kansai Medical University, Osaka, Japan), for insightful discussions, M. Ohkura (Kyushu University of Health and Welfare, Miyazaki, Japan) for providing an expression plasmid of G-CaMP8. This project was supported by grants from Japan Society for the Promotion of Science (16H07353, 17K09586, 20K08502, and 23K07589 to M.H.), TAKEDA Science Foundation, The Novartis Foundation (16-113), SENSHIN Medical Research Foundation to M.H, and the Strategic Project for Proofreading and Submission Support of International Academic Papers by Kansai Medical University to M.H. This research was also supported by Research Support Project for Life Science and Drug Discovery (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)) from AMED under Grant Number JP24ama121020.

Author information

Authors and Affiliations

  1. Department of Pharmacology, Kansai Medical University, Hirakata, Osaka, Japan

    Keita Fujiwara, Tomoya O. Akama, Tomoyuki Nakamura & Maretoshi Hirai

  2. Department of Medicine II, Kansai Medical University, Hirakata, Osaka, Japan

    Keita Fujiwara & Ichiro Shiojima

  3. Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan

    Katsunori Fujiki & Katsuhiko Shirahige

  4. Laboratory of Chromosome dynamics and genome stability, Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden

    Katsuhiko Shirahige

Authors

  1. Keita Fujiwara
  2. Katsunori Fujiki
  3. Tomoya O. Akama
  4. Katsuhiko Shirahige
  5. Ichiro Shiojima
  6. Tomoyuki Nakamura
  7. Maretoshi Hirai

Contributions

M.H. conceived the study, developed the methodology, and supervised the project. K. Fujiwara, K. Fujiki, and M.H. performed the investigation. K. Fujiki, K.S., I.S., T.N., and M.H. provided resources. M.H. performed formal analysis and visualization, and wrote, edited, and finalized the manuscript. T.O.A. and T.N. contributed to the writing (review and editing).

Corresponding author

Correspondence to Maretoshi Hirai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Biology thanks Daniel Conway, Zheng Liu, and the other, anonymous, reviewer for their contribution to the peer review of this work. Primary Handling Editors: Yingke Xu & Rosie Bunton-Stasyshyn. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujiwara, K., Fujiki, K., Akama, T.O. et al. Molecular tension indicators reveal unexpectedly complex regulation of tension in live mouse organs. Commun Biol (2026). https://doi.org/10.1038/s42003-026-09746-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s42003-026-09746-0