Multi-lineage hepatic organoids reveal toxic exosome mediated indirect hepatotoxicity

multi-lineage-hepatic-organoids-reveal-toxic-exosome-mediated-indirect-hepatotoxicity
Multi-lineage hepatic organoids reveal toxic exosome mediated indirect hepatotoxicity

References

  1. David, S. & Hamilton, J. P. Drug-induced liver injury. US Gastroenterol. Hepatol. Rev. 6, 73–80 (2010).

    Google Scholar 

  2. Villanueva-Badenas, E., Donato, M. T. & Tolosa, L. Mechanistic understanding of idiosyncratic drug-induced hepatotoxicity using co-cultures of hepatocytes and macrophages. Antioxidants 12, https://doi.org/10.3390/antiox12071315 (2023).

  3. Chalasani, N. P. et al. ACG clinical guideline: diagnosis and management of idiosyncratic drug-induced liver injury. Am. J. Gastroenterol. 116, 878–898 (2021).

    Google Scholar 

  4. Bjornsson, H. K. & Bjornsson, E. S. Drug-induced liver injury: pathogenesis, epidemiology, clinical features, and practical management. Eur. J. Intern. Med. 97, 26–31 (2022).

    Google Scholar 

  5. Iorga, A., Dara, L. & Kaplowitz, N. Drug-induced liver injury: cascade of events leading to cell death, apoptosis or necrosis. Int. J. Mol. Sci. 18, https://doi.org/10.3390/ijms18051018 (2017).

  6. Chen, D. et al. p53 up-regulated modulator of apoptosis induction mediates acetaminophen-induced necrosis and liver injury in mice. Hepatology 69, 2164–2179 (2019).

    Google Scholar 

  7. Gerussi, A. et al. Immune-mediated drug-induced liver injury: immunogenetics and experimental models. Int. J. Mol. Sci. 22, https://doi.org/10.3390/ijms22094557 (2021).

  8. Fu, S. et al. Molecular biomarkers in drug-induced liver injury: challenges and future perspectives. Front. Pharmacol. 10, 1667 (2019).

    Google Scholar 

  9. Wang, D. Y. et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 4, 1721–1728 (2018).

    Google Scholar 

  10. De Martin, E. et al. Characterization of liver injury induced by cancer immunotherapy using immune checkpoint inhibitors. J. Hepatol. 68, 1181–1190 (2018).

    Google Scholar 

  11. Kok, B. et al. Acute liver failure from tumor necrosis factor-alpha antagonists: report of four cases and literature review. Dig. Dis. Sci. 63, 1654–1666 (2018).

    Google Scholar 

  12. Zoubek, M. E. et al. Liver injury after methylprednisolone pulses: a disputable cause of hepatotoxicity. A case series and literature review. United Eur. Gastroenterol. J. 7, 825–837 (2019).

  13. Serras, A. S. et al. A critical perspective on 3D liver models for drug metabolism and toxicology studies. Front. Cell Dev. Biol. 9, 626805 (2021).

  14. Cox, C. R., Lynch, S., Goldring, C. & Sharma, P. Current perspective: 3D spheroid models utilizing human-based cells for investigating metabolism-dependent drug-induced liver injury. Front. Med. Technol. 2, 611913 (2020).

    Google Scholar 

  15. Wang, S. et al. Human ESC-derived expandable hepatic organoids enable therapeutic liver repopulation and pathophysiological modeling of alcoholic liver injury. Cell Res. 29, 1009–1026 (2019).

  16. Mun, S. J. et al. Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids. J. Hepatol. 71, 970–985 (2019).

    Google Scholar 

  17. Huch, M. et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494, 247–250 (2013).

    Google Scholar 

  18. Peng, W. C. et al. Inflammatory cytokine TNFalpha promotes the long-term expansion of primary hepatocytes in 3D culture. Cell 175, 1607–1619 (2018).

    Google Scholar 

  19. Takebe, T. et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499, 481–484 (2013).

    Google Scholar 

  20. Takebe, T. et al. Massive and reproducible production of liver buds entirely from human pluripotent stem cells. Cell Rep. 21, 2661–2670 (2017).

    Google Scholar 

  21. Guan, Y. et al. Human hepatic organoids for the analysis of human genetic diseases. JCI Insight 8, https://doi.org/10.1172/jci.insight.176034 (2023).

  22. Akbari, S. et al. Robust, long-term culture of endoderm-derived hepatic organoids for disease modeling. Stem Cell Rep. 13, 627–641 (2019).

    Google Scholar 

  23. Hu, H. et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell 175, 1591–1606 (2018).

    Google Scholar 

  24. Koike, H. et al. Modelling human hepato-biliary-pancreatic organogenesis from the foregut-midgut boundary. Nature 574, 112–116 (2019).

  25. Ouchi, R. et al. Modeling steatohepatitis in humans with pluripotent stem cell-derived organoids. Cell Metab. 30, 374–384 (2019).

    Google Scholar 

  26. Yang, H. et al. Three-dimensional bioprinted hepatorganoids prolong survival of mice with liver failure. Gut 70, 567–574 (2021).

    Google Scholar 

  27. Jin, M. et al. Advancements in stem cell-derived hepatocyte-like cell models for hepatotoxicity testing. Stem Cell Res. Ther. 12, 84 (2021).

    Google Scholar 

  28. Wu, X., Jiang, D., Yang, Y., Li, S. & Ding, Q. Modeling drug-induced liver injury and screening for anti-hepatofibrotic compounds using human PSC-derived organoids. Cell Regen. 12, 6 (2023).

    Google Scholar 

  29. Shao, W. et al. Advances in liver organoids: replicating hepatic complexity for toxicity assessment and disease modeling. Stem Cell Res. Ther. 16, 27 (2025).

    Google Scholar 

  30. Ramli, M. N. B. et al. Human pluripotent stem cell-derived organoids as models of liver disease. Gastroenterology 159, 1471–1486 (2020).

    Google Scholar 

  31. Gong, J., Tu, W., Liu, J. & Tian, D. Hepatocytes: a key role in liver inflammation. Front. Immunol. 13, 1083780 (2022).

    Google Scholar 

  32. Masyuk, A. I., Masyuk, T. V. & Larusso, N. F. Exosomes in the pathogenesis, diagnostics and therapeutics of liver diseases. J. Hepatol. 59, 621–625 (2013).

    Google Scholar 

  33. Nail, H. M., Chiu, C. C., Leung, C. H., Ahmed, M. M. M. & Wang, H. D. Exosomal miRNA-mediated intercellular communications and immunomodulatory effects in tumor microenvironments. J. Biomed. Sci. 30, 69 (2023).

    Google Scholar 

  34. Su, Q. et al. Single-cell RNA transcriptome landscape of hepatocytes and non-parenchymal cells in healthy and NAFLD mouse liver. iScience 24, 103233 (2021).

    Google Scholar 

  35. Koui, Y. et al. Development of human iPSC-derived quiescent hepatic stellate cell-like cells for drug discovery and in vitro disease modeling. Stem Cell Rep. 16, 3050–3063 (2021).

    Google Scholar 

  36. Kim, J. H., Lee, C. H. & Baek, M. C. Dissecting exosome inhibitors: therapeutic insights into small-molecule chemicals against cancer. Exp. Mol. Med. 54, 1833–1843 (2022).

    Google Scholar 

  37. Yasuhara, H., Dujovne, C. A., Ueda, I. & Arakawa, K. Hepatotoxicity and surface activity of tricyclic antidepressants in vitro. Toxicol. Appl. Pharmacol. 47, 47–54 (1979).

    Google Scholar 

  38. Mu, W. et al. Tricyclic antidepressants induce liver inflammation by targeting NLRP3 inflammasome activation. Cell Commun. Signal. 21, 123 (2023).

    Google Scholar 

  39. Duda, W. et al. The effect of chronic mild stress and imipramine on the markers of oxidative stress and antioxidant system in rat liver. Neurotox. Res. 30, 173–184 (2016).

    Google Scholar 

  40. Chang, G. R. et al. Imipramine accelerates nonalcoholic fatty liver disease, renal impairment, diabetic retinopathy, insulin resistance, and urinary chromium loss in obese mice. Vet. Sci. 8, https://doi.org/10.3390/vetsci8090189 (2021).

  41. Casarotto, P. C. et al. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell 184, 1299–1313 (2021).

    Google Scholar 

  42. McGeary, S. E. et al. The biochemical basis of microRNA targeting efficacy. Science 366, https://doi.org/10.1126/science.aav1741 (2019).

  43. McNabb, D. S., Reed, R. & Marciniak, R. A. Dual luciferase assay system for rapid assessment of gene expression in Saccharomyces cerevisiae. Eukaryot. Cell 4, 1539–1549 (2005).

    Google Scholar 

  44. Si-Tayeb, K., Lemaigre, F. P. & Duncan, S. A. Organogenesis and development of the liver. Dev. Cell 18, 175–189 (2010).

    Google Scholar 

  45. Kamm, D. R. & McCommis, K. S. Hepatic stellate cells in physiology and pathology. J. Physiol. 600, 1825–1837 (2022).

    Google Scholar 

  46. Sorensen, K. K., Simon-Santamaria, J., McCuskey, R. S. & Smedsrod, B. Liver sinusoidal endothelial cells. Compr. Physiol. 5, 1751–1774 (2015).

    Google Scholar 

  47. Robinson, M. W., Harmon, C. & O’Farrelly, C. Liver immunology and its role in inflammation and homeostasis. Cell. Mol. Immunol. 13, 267–276 (2016).

    Google Scholar 

  48. Nejak-Bowen, K. If it looks like a duct and acts like a duct: on the role of reprogrammed hepatocytes in cholangiopathies. Gene Expr. 20, 19–23 (2020).

    Google Scholar 

  49. Bjornsson, E. S. Hepatotoxicity of statins and other lipid-lowering agents. Liver Int. 37, 173–178 (2017).

    Google Scholar 

  50. Shinozawa, T. et al. High-fidelity drug-induced liver injury screen using human pluripotent stem cell-derived organoids. Gastroenterology 160, 831–846 (2021).

    Google Scholar 

  51. Zhang, C. J. et al. A human liver organoid screening platform for DILI risk prediction. J Hepatol. 78, 998–1006 (2023).

    Google Scholar 

  52. Hirsova, P. et al. Lipid-induced signaling causes release of inflammatory extracellular vesicles from hepatocytes. Gastroenterology 150, 956–967 (2016).

    Google Scholar 

  53. Zhang, Y. et al. Synthetic liver fibrotic niche extracts achieve in vitro hepatoblasts phenotype enhancement and expansion. iScience 24, 103303 (2021).

    Google Scholar 

  54. Zhang, Y. et al. hESCs-derived organoids achieve liver zonation features through LSEC modulation. Adv. Sci. 12, e2411667, (2025).

  55. Zheng, Y. B. et al. Design and fabrication of an integrated 3D dynamic multicellular liver-on-a-chip and its application in hepatotoxicity screening. Talanta 241, 123262 (2022).

    Google Scholar 

  56. Tan, F. et al. Clinical applications of stem cell-derived exosomes. Signal Transduct. Target. Ther. 9, 17 (2024).

    Google Scholar 

  57. Gangoda, L., Boukouris, S., Liem, M., Kalra, H. & Mathivanan, S. Extracellular vesicles including exosomes are mediators of signal transduction: are they protective or pathogenic? Proteomics 15, 260–271 (2015).

    Google Scholar 

  58. Cho, Y. E. et al. Exogenous exosomes from mice with acetaminophen-induced liver injury promote toxicity in the recipient hepatocytes and mice. Sci. Rep. 8, 16070 (2018).

    Google Scholar 

  59. Corcoran, C. et al. Docetaxel-resistance in prostate cancer: evaluating associated phenotypic changes and potential for resistance transfer via exosomes. PLoS ONE 7, e50999 (2012).

    Google Scholar 

  60. Wang, C. et al. Exosomes carrying ALDOA and ALDH3A1 from irradiated lung cancer cells enhance migration and invasion of recipients by accelerating glycolysis. Mol. Cell. Biochem. 469, 77–87 (2020).

    Google Scholar 

  61. Jin, H. et al. Exosomal zinc transporter ZIP4 promotes cancer growth and is a novel diagnostic biomarker for pancreatic cancer. Cancer Sci. 109, 2946–2956 (2018).

    Google Scholar 

  62. Li, Y., Zhao, Z., Liu, W. & Li, X. SNHG3 functions as miRNA sponge to promote breast cancer cells growth through the metabolic reprogramming. Appl. Biochem. Biotechnol. 191, 1084–1099 (2020).

    Google Scholar 

  63. Sun, X. et al. Let-7: a regulator of the ERalpha signaling pathway in human breast tumors and breast cancer stem cells. Oncol. Rep. 29, 2079–2087 (2013).

    Google Scholar 

  64. Yan, W. et al. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat. Cell Biol. 20, 597–609 (2018).

    Google Scholar 

  65. Hirsova, P. et al. Extracellular vesicles in liver pathobiology: small particles with big impact. Hepatology 64, 2219–2233 (2016).

    Google Scholar 

  66. Allameh, A., Niayesh-Mehr, R., Aliarab, A., Sebastiani, G. & Pantopoulos, K. Oxidative stress in liver pathophysiology and disease. Antioxidants 12, https://doi.org/10.3390/antiox12091653 (2023).

  67. Lauschke, V. M., Hendriks, D. F., Bell, C. C., Andersson, T. B. & Ingelman-Sundberg, M. Novel 3D culture systems for studies of human liver function and assessments of the hepatotoxicity of drugs and drug candidates. Chem. Res. Toxicol. 29, 1936–1955 (2016).

    Google Scholar 

  68. Drees, E. E. E. et al. Towards IVDR-compliance by implementing quality control steps in a quantitative extracellular vesicle-miRNA liquid biopsy assay for response monitoring in patients with classic Hodgkin lymphoma. J. Extracell. Biol. 3, e164 (2024).

    Google Scholar 

  69. Cabral, F. et al. Purification of hepatocytes and sinusoidal endothelial cells from mouse liver perfusion. J. Vis. Exp. https://doi.org/10.3791/56993 (2018).

  70. Bell, C. C. et al. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease. Sci. Rep. 6, 25187 (2016).

    Google Scholar 

  71. Lin, Z. & Will, Y. Evaluation of drugs with specific organ toxicities in organ-specific cell lines. Toxicol. Sci. 126, 114–127 (2012).

    Google Scholar 

  72. Li, C. et al. scRank infers drug-responsive cell types from untreated scRNA-seq data using a target-perturbed gene regulatory network. Cell Rep. Med. 5, 101568 (2024).

    Google Scholar 

  73. Qi, J. et al. Single-cell and spatial analysis reveal interaction of FAP(+) fibroblasts and SPP1(+) macrophages in colorectal cancer. Nat. Commun. 13, 1742 (2022).

    Google Scholar 

Download references