Williams, R. W. in Principles of Molecular Medicine (eds Runge, M. S. & Patterson, C.) 53–60 (Humana Press, 2006). https://doi.org/10.1007/978-1-59259-963-9_8
Perlman, R. L. Mouse models of human disease: An evolutionary perspective. Evol. Med. Public Health 2016, 170–176. https://doi.org/10.1093/emph/eow014 (2016).
Smith, P., DiLillo, D. J., Bournazos, S., Li, F. & Ravetch, J. V. Mouse model recapitulating human Fcγ receptor structural and functional diversity. Proc. Natl. Acad. Sci. U. S. A. 109, 6181–6186. https://doi.org/10.1073/pnas.1203954109 (2012).
Scherrer, G. et al. Knockin mice expressing fluorescent δ-opioid receptors uncover G protein-coupled receptor dynamics in vivo. Proc. Natl. Acad. Sci. U. S. A. 103, 9691–9696. https://doi.org/10.1073/pnas.0603359103 (2006).
Lee, H. Genetically engineered mouse models for drug development and preclinical trials. Biomol. Ther. 22, 267–274. https://doi.org/10.4062/biomolther.2014.074 (2014).
Passier, R., Orlova, V. & Mummery, C. Complex tissue and disease modeling using hiPSCs. Cell Stem Cell 18, 309–321. https://doi.org/10.1016/j.stem.2016.02.011 (2016).
Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823. https://doi.org/10.1126/science.1231143 (2013).
Chang, H. H. Y., Pannunzio, N. R., Adachi, N. & Lieber, M. R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 18, 495–506. https://doi.org/10.1038/nrm.2017.48 (2017).
Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822–826. https://doi.org/10.1038/nbt.2623 (2013).
Hwang, G.-H. et al. Large DNA deletions occur during DNA repair at 20-fold lower frequency for base editors and prime editors than for Cas9 nucleases. Nat. Biomed. Eng. 9, 79–92. https://doi.org/10.1038/s41551-024-01277-5 (2025).
Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765–771. https://doi.org/10.1038/nbt.4192 (2018).
Cullot, G. et al. CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations. Nat. Commun. 10, 1136. https://doi.org/10.1038/s41467-019-09006-2 (2019).
Weisheit, I. et al. Detection of deleterious on-target effects after HDR-mediated CRISPR editing. Cell Rep. 31, 107689. https://doi.org/10.1016/j.celrep.2020.107689 (2020).
Leibowitz, M. L. et al. Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nat. Genet. 53, 895–905. https://doi.org/10.1038/s41588-021-00838-7 (2021).
Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471. https://doi.org/10.1038/nature24644 (2017).
Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424. https://doi.org/10.1038/nature17946 (2016).
Rees, H. A. & Liu, D. R. Base editing: Precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–788. https://doi.org/10.1038/s41576-018-0059-1 (2018).
Gaudelli, N. M. et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat. Biotechnol. 38, 892–900. https://doi.org/10.1038/s41587-020-0491-6 (2020).
Wu, X. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol. 32, 670–676. https://doi.org/10.1038/nbt.2889 (2014).
Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832. https://doi.org/10.1038/nbt.2647 (2013).
Grünewald, J. et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569, 433–437. https://doi.org/10.1038/s41586-019-1161-z (2019).
Li, S., Liu, L., Sun, W., Zhou, X. & Zhou, H. A large-scale genome and transcriptome sequencing analysis reveals the mutation landscapes induced by high-activity adenine base editors in plants. Genome Biol. 23, 51. https://doi.org/10.1186/s13059-022-02618-w (2022).
Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883–891. https://doi.org/10.1038/s41587-020-0453-z (2020).
Chen, L. et al. Engineering a precise adenine base editor with minimal bystander editing. Nat. Chem. Biol. 19, 101–110. https://doi.org/10.1038/s41589-022-01163-8 (2023).
Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368, 290–296. https://doi.org/10.1126/science.aba8853 (2020).
Liao, J. et al. Therapeutic adenine base editing of human hematopoietic stem cells. Nat. Commun. 14, 207. https://doi.org/10.1038/s41467-022-35508-7 (2023).
Patel, S. & Kilpatrick, B. S. Two-pore channels and disease. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 1865, 1678–1686. https://doi.org/10.1016/j.bbamcr.2018.05.004 (2018).
García-Rúa, V. et al. Increased expression of fatty-acid and calcium metabolism genes in failing human heart. PLoS ONE 7, e37505. https://doi.org/10.1371/journal.pone.0037505 (2012).
Deutsch, R., Kudrina, V., Freichel, M. & Grimm, C. Two-pore channel regulators—Who is in control?. Front. Physiol. https://doi.org/10.3389/fphys.2024.1534071 (2025).
Medert, R. et al. Genetic background influences expression and function of the cation channel TRPM4 in the mouse heart. Basic Res. Cardiol. 115, 70. https://doi.org/10.1007/s00395-020-00831-x (2020).
Stallmeyer, B. et al. Mutational spectrum in the Ca2+-activated cation channel gene TRPM4 in patients with cardiac conductance disturbances. Hum. Mutat. 33, 109–117. https://doi.org/10.1002/humu.21599 (2012).
Tu, T. et al. A precise and efficient adenine base editor. Mol. Ther. 30, 2933–2941. https://doi.org/10.1016/j.ymthe.2022.07.010 (2022).
Jeong, Y. K. et al. Adenine base editor engineering reduces editing of bystander cytosines. Nat. Biotechnol. 39, 1426–1433. https://doi.org/10.1038/s41587-021-00943-2 (2021).
Cao, X. et al. Engineering of near-PAMless adenine base editor with enhanced editing activity and reduced off-target. Mol. Ther. Nucleic Acids 28, 732–742. https://doi.org/10.1016/j.omtn.2022.04.032 (2022).
Zhang, Z. et al. Engineering an adenine base editor in human embryonic stem cells with minimal DNA and RNA off-target activities. Mol. Ther. Nucleic Acids 29, 502–510. https://doi.org/10.1016/j.omtn.2022.07.026 (2022).
Li, G. et al. A novel base editor SpRY-ABE8eF148A mediates efficient A-to-G base editing with a reduced off-target effect. Mol. Ther. Nucleic Acids 31, 78–87. https://doi.org/10.1016/j.omtn.2022.12.001 (2023).
Xiong, X. et al. Split complementation of base editors to minimize off-target edits. Nat. Plants 9, 1832–1847. https://doi.org/10.1038/s41477-023-01540-8 (2023).
Zeng, H. et al. A split and inducible adenine base editor for precise in vivo base editing. Nat. Commun. 14, 5573. https://doi.org/10.1038/s41467-023-41331-5 (2023).
Kim, Y.-h et al. Sniper2L is a high-fidelity Cas9 variant with high activity. Nat. Chem. Biol. 19, 972–980. https://doi.org/10.1038/s41589-023-01279-5 (2023).
Wang, Z. et al. Decreasing predictable DNA off-target effects and narrowing editing windows of adenine base editors by fusing human Rad18 protein variant. Int. J. Biol. Macromol. 253, 127418. https://doi.org/10.1016/j.ijbiomac.2023.127418 (2023).
Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63. https://doi.org/10.1038/nature26155 (2018).
Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481–485. https://doi.org/10.1038/nature14592 (2015).
Huang, T. P. et al. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nat. Biotechnol. 37, 626–631. https://doi.org/10.1038/s41587-019-0134-y (2019).
Nishimasu, H. et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361, 1259–1262. https://doi.org/10.1126/science.aas9129 (2018).
Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191. https://doi.org/10.1038/nature14299 (2015).
Miller, S. M. et al. Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat. Biotechnol. 38, 471–481. https://doi.org/10.1038/s41587-020-0412-8 (2020).
Zhao, L. et al. PAM-flexible genome editing with an engineered chimeric Cas9. Nat. Commun. 14, 6175. https://doi.org/10.1038/s41467-023-41829-y (2023).
Li, J. et al. Genome editing mediated by SpCas9 variants with broad non-canonical PAM compatibility in plants. Mol. Plant 14, 352–360. https://doi.org/10.1016/j.molp.2020.12.017 (2021).
Villiger, L. et al. In vivo cytidine base editing of hepatocytes without detectable off-target mutations in RNA and DNA. Nat. Biomed. Eng. 5, 179–189. https://doi.org/10.1038/s41551-020-00671-z (2021).
Liu, Z. et al. Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing. Nat. Commun. 9, 2338. https://doi.org/10.1038/s41467-018-04768-7 (2018).
Ryu, S.-M. et al. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat. Biotechnol. 36, 536–539. https://doi.org/10.1038/nbt.4148 (2018).
Yang, L. et al. Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants. Protein Cell 9, 814–819. https://doi.org/10.1007/s13238-018-0568-x (2018).
Fu, J. et al. Human cell based directed evolution of adenine base editors with improved efficiency. Nat. Commun. 12, 5897. https://doi.org/10.1038/s41467-021-26211-0 (2021).
Qian, Y. et al. A new compact adenine base editor generated through deletion of HNH and REC2 domain of SpCas9. BMC Biol. 21, 155. https://doi.org/10.1186/s12915-023-01644-9 (2023).
Zhao, D. et al. Engineered domain-inlaid Nme2Cas9 adenine base editors with increased on-target DNA editing and targeting scope. BMC Biol. 21, 250. https://doi.org/10.1186/s12915-023-01754-4 (2023).
Cornean, A. et al. Precise in vivo functional analysis of DNA variants with base editing using ACEofBASEs target prediction. Elife 11, e72124. https://doi.org/10.7554/eLife.72124 (2022).
Doman, J. L., Raguram, A., Newby, G. A. & Liu, D. R. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat. Biotechnol. 38, 620–628. https://doi.org/10.1038/s41587-020-0414-6 (2020).
Joshi, J., Albers, C., Smole, N., Guo, S. & Smith, S. A. Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) for modeling cardiac arrhythmias: Strengths, challenges and potential solutions. Front. Physiol. https://doi.org/10.3389/fphys.2024.1475152 (2024).
Cerneckis, J., Cai, H. & Shi, Y. Induced pluripotent stem cells (iPSCs): Molecular mechanisms of induction and applications. Signal Transduct. Target. Ther. 9, 112. https://doi.org/10.1038/s41392-024-01809-0 (2024).
Brookhouser, N. et al. A Cas9-mediated adenosine transient reporter enables enrichment of ABE-targeted cells. BMC Biol. 18, 193. https://doi.org/10.1186/s12915-020-00929-7 (2020).
Rosello, M. et al. Disease modeling by efficient genome editing using a near PAM-less base editor in vivo. Nat. Commun. 13, 3435. https://doi.org/10.1038/s41467-022-31172-z (2022).
Zuo, E. et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289–292. https://doi.org/10.1126/science.aav9973 (2019).
Lee, S.-H. et al. Bystander editing by adenine base editors impairs vision restoration in a mouse model of Leber congenital amaurosis. Mol. Ther. Methods Clin. Dev. https://doi.org/10.1016/j.omtm.2025.101461 (2025).
Tuladhar, R. et al. CRISPR-Cas9-based mutagenesis frequently provokes on-target mRNA misregulation. Nat. Commun. 10, 4056. https://doi.org/10.1038/s41467-019-12028-5 (2019).
Höijer, I. et al. CRISPR-Cas9 induces large structural variants at on-target and off-target sites in vivo that segregate across generations. Nat. Commun. 13, 627. https://doi.org/10.1038/s41467-022-28244-5 (2022).
Perrotta, R. M. et al. Engineered base editors with reduced bystander editing through directed evolution. Nat. Biotechnol. https://doi.org/10.1038/s41587-025-02937-w (2025).
Xiao, Y.-L., Wu, Y. & Tang, W. An adenine base editor variant expands context compatibility. Nat. Biotechnol. 42, 1442–1453. https://doi.org/10.1038/s41587-023-01994-3 (2024).
Qin, W. et al. ABE-ultramax for high-efficiency biallelic adenine base editing in zebrafish. Nat. Commun. 15, 5613. https://doi.org/10.1038/s41467-024-49943-1 (2024).
Zhao, N. et al. Evolved cytidine and adenine base editors with high precision and minimized off-target activity by a continuous directed evolution system in mammalian cells. Nat. Commun. 15, 8140. https://doi.org/10.1038/s41467-024-52483-3 (2024).
Chen, Q. et al. Engineering of peptide-inserted base editors with enhanced accuracy and security. Small 21, 2411583. https://doi.org/10.1002/smll.202411583 (2025).
Liao, J. et al. Sequential amino acid mutagenesis-driven de novo evolution of adenine deaminases enables efficient in vivo base editing in primate. bioRxiv. 2025.2005.2014.653640 (2025). https://doi.org/10.1101/2025.05.14.653640
Silverstein, R. A. et al. Custom CRISPR–Cas9 PAM variants via scalable engineering and machine learning. Nature https://doi.org/10.1038/s41586-025-09021-y (2025).
Fiumara, M. et al. Genotoxic effects of base and prime editing in human hematopoietic stem cells. Nat. Biotechnol. 42, 877–891. https://doi.org/10.1038/s41587-023-01915-4 (2024).
Peña-Gutiérrez, I., Olalla-Sastre, B., Río, P. & Rodríguez-Madoz, J. R. Beyond precision: Evaluation of off-target clustered regularly interspaced short palindromic repeats/Cas9-mediated genome editing. Cytotherapy 27, 279–286. https://doi.org/10.1016/j.jcyt.2024.10.010 (2025).
Liang, P. et al. Genome-wide profiling of adenine base editor specificity by EndoV-seq. Nat. Commun. 10, 67. https://doi.org/10.1038/s41467-018-07988-z (2019).
Kim, D., Kim, D.-e, Lee, G., Cho, S.-I. & Kim, J.-S. Genome-wide target specificity of CRISPR RNA-guided adenine base editors. Nat. Biotechnol. 37, 430–435. https://doi.org/10.1038/s41587-019-0050-1 (2019).
Yuan, K. et al. Selict-seq profiles genome-wide off-target effects in adenosine base editing. Nucleic Acids Res. https://doi.org/10.1093/nar/gkaf281 (2025).
Turchiano, G. et al. Quantitative evaluation of chromosomal rearrangements in gene-edited human stem cells by CAST-Seq. Cell Stem Cell 28, 1136-1147.e1135. https://doi.org/10.1016/j.stem.2021.02.002 (2021).
Shi, Y., Inoue, H., Wu, J. C. & Yamanaka, S. Induced pluripotent stem cell technology: A decade of progress. Nat. Rev. Drug Discov. 16, 115–130. https://doi.org/10.1038/nrd.2016.245 (2017).
Heinzelmann, E. et al. iPSC-derived and patient-derived organoids: Applications and challenges in scalability and reproducibility as pre-clinical models. Curr. Res. Toxicol. 7, 100197. https://doi.org/10.1016/j.crtox.2024.100197 (2024).
Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157. https://doi.org/10.1038/s41586-019-1711-4 (2019).
Alves, C. R. R. et al. Optimization of base editors for the functional correction of SMN2 as a treatment for spinal muscular atrophy. Nat. Biomed. Eng. 8, 118–131. https://doi.org/10.1038/s41551-023-01132-z (2024).
Chen, P. J. et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184, 5635-5652.e5629. https://doi.org/10.1016/j.cell.2021.09.018 (2021).
Medert, R. et al. Efficient single copy integration via homology-directed repair (scHDR) by 5′modification of large DNA donor fragments in mice. Nucleic Acids Res. 51, e14–e14. https://doi.org/10.1093/nar/gkac1150 (2022).
Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226. https://doi.org/10.1038/s41587-019-0032-3 (2019).
Doman, J. L., Sousa, A. A., Randolph, P. B., Chen, P. J. & Liu, D. R. Designing and executing prime editing experiments in mammalian cells. Nat. Protoc. 17, 2431–2468. https://doi.org/10.1038/s41596-022-00724-4 (2022).
Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686. https://doi.org/10.21105/joss.01686 (2019).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016). https://doi.org/10.18637/jss.v035.b01.
Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots (2022). https://doi.org/10.32614/CRAN.package.ggpubr
Wilke, C. O. cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’. (2024). https://doi.org/10.32614/CRAN.package.cowplot
