References
-
Yin, T. & Shi, L. Processing and preservation of aquatic products. Foods 12, 2061 (2023).
-
FAO. The State of World Fisheries and Aquaculture 2024:: Blue Transformation in Action. (FAO., 2024).
-
Zhuang, S. et al. Biochemical changes and amino acid deamination & decarboxylation activities of spoilage microbiota in chill-stored grass carp (Ctenopharyngodon idella) fillets. Food Chem. 336, 127683 (2021).
-
Zhuang, S. et al. Exploration of the roles of spoilage bacteria in degrading grass carp proteins during chilled storage: a combined metagenomic and metabolomic approach. Food Res. Int. 152, 110926 (2022).
-
Huang, Q. et al. Changes in physicochemical properties of silver carp (Hypophthalmichthys molitrix) surimi during chilled storage: the roles of spoilage bacteria. Food Chem. 387, 132847 (2022).
-
Bjornsdottir-Butler, K., Leon, M. S. & Benner, R. A. Draft genome sequences of histamine-producing Morganella psychrotolerans strains. Genome Announc 4, e01001–e01016 (2016).
-
Tomaru, A., Toda, M. & Hara-Kudo, Y. Literature review on the type of fish and histamine-producing bacteria associated with histamine poisonings in Japan. J. Food Hyg. Soc. Jpn 63, 109–116 (2022).
-
Emborg, J., Ahrens, P. & Dalgaard, P. Morganella psychrotolerans – Identification, histamine formation and importance for histamine fish poisoning. (Technical University of Denmark, 2007).
-
Emborg, J., Dalgaard, P. & Ahrens, P. Morganella psychrotolerans sp. nov., a histamine-producing bacterium isolated from various seafoods. Int. J. Syst. Evolut. Microbiol. 56, 2473–2479 (2006).
-
Emborg, J. & Dalgaard, P. Formation of histamine and biogenic amines in cold-smoked tuna: an investigation of psychrotolerant bacteria from samples implicated in cases of histamine fish poisoning. J. Food Prot. 69, 897–906 (2006).
-
Li, J. et al. Contamination of Morganella psychrotolerans in fish products and histamine production capacity of the isolated strains. Food Sci. 45, 5275–5282 (2024).
-
Waters, C. M. & Bassler, B. L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005).
-
Shi, Q. et al. Virtual screening–based discovery of AI-2 quorum sensing inhibitors that interact with an allosteric hydrophobic site of LsrK and their functional evaluation. Front. Chem. 11, 1185224 (2023).
-
Miller, M. B. & Bassler, B. L. Quorum sensing in bacteria. Annu. Rev. Microbiol 55, 165–199 (2001).
-
Mangwani, N., Dash, H. R., Chauhan, A. & Das, S. Bacterial quorum sensing: functional features and potential applications in biotechnology. Micro. Physiol. 22, 215–227 (2012).
-
Wang, Y., Li, X., Zhang, G., Bi, J. & Hou, H. Transcriptome reveals regulation of quorum sensing of Hafnia alvei H4 on the coculture system of Hafnia alvei H4 and Pseudomonas fluorescens ATCC13525. Foods 13, 336 (2024).
-
Blana, V. A. & Nychas, G.-J. E. Presence of quorum sensing signal molecules in minced beef stored under various temperature and packaging conditions. Int. J. Food Microbiol. 173, 1–8 (2014).
-
Zhao, J., Quan, C., Jin, L. & Chen, M. Production, detection and application perspectives of quorum sensing autoinducer-2 in bacteria. J. Biotechnol. 268, 53–60 (2018).
-
Fu, L., Wang, C., Liu, N., Ma, A. & Wang, Y. Quorum sensing system-regulated genes affect the spoilage potential of Shewanella baltica. Food Res. Int. 107, 1–9 (2018).
-
Tomaś, N. & Myszka, K. Current advances in the concept of quorum sensing-based prevention of spoilage of fish products by Pseudomonads. Appl. Sci. 12, 6719 (2022).
-
Hu, Z. et al. Inhibition of citral nanoemulsion to growth, spoilage ability and AI-2/ luxS quorum sensing system of Shewanella putrefaciens CN-32: a study on bacteriostasis from in vitro culture and gene expression analysis. Food Qual. Saf. 6, fyac044 (2022).
-
Hu, Z. et al. The luxS deletion reduces the spoilage ability of Shewanella putrefaciens: an analysis focusing on quorum sensing and activated methyl cycle. Food Microbiol. 120, 104467 (2024).
-
Li, J. et al. Complete genome sequence provides insights into the quorum sensing-related spoilage potential of Shewanella baltica 128 isolated from spoiled shrimp. Genomics 112, 736–748 (2020).
-
Liu, L. et al. Complete genome sequence provides information on quorum sensing related spoilage and virulence of Aeromonas salmonicida GMT3 isolated from spoiled sturgeon. Food Res. Int. 196, 115039 (2024).
-
Meng, F. et al. Virtual screening and in vitro experimental verification of LuxS inhibitors from natural products for Lactobacillus reuteri. Biomed. Pharmacother. 147, 112521 (2022).
-
Zong, B. et al. Baicalin weakens the virulence of porcine extraintestinal pathogenic Escherichia coli by inhibiting the LuxS/AI-2 quorum-sensing system. Biomolecules 14, 452 (2024).
-
Galperin, M. Y., Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 43, D261–D269 (2015).
-
Tomaś, N., Myszka, K. & Wolko, Ł Black pepper and tarragon essential oils suppress the lipolytic potential and the type II secretion system of P. psychrophila KM02. Sci. Rep. 12, 5487 (2022).
-
Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. Genet 25, 25–29 (2000).
-
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
-
Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951 (2019).
-
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res 51, D587–D592 (2023).
-
Houicher, A., Bensid, A., Regenstein, J. M. & Özogul, F. Control of biogenic amine production and bacterial growth in fish and seafood products using phytochemicals as biopreservatives: a review. Food Biosci. 39, 100807 (2021).
-
Visciano, P., Schirone, M. & Paparella, A. An overview of histamine and other biogenic amines in fish and fish products. Foods 9, 1795 (2020).
-
Ding, T. & Li, Y. Biogenic amines are important indices for characterizing the freshness and hygienic quality of aquatic products: a review. LWT 194, 115793 (2024).
-
Wang, D. et al. Elucidating the potential of chlorogenic acid for controlling Morganella psychrotolerans growth and histamine formation. J. Appl. Microbiol. 135, lxad308 (2024).
-
Remenant, B., Jaffrès, E., Dousset, X., Pilet, M.-F. & Zagorec, M. Bacterial spoilers of food: Behavior, fitness and functional properties. Food Microbiol. 45, 45–53 (2015).
-
Wang, D. et al. Complete genome analysis reveals the quorum sensing-related spoilage potential of Pseudomonas fluorescens PF08, a specific spoilage organism of turbot (Scophthalmus maximus). Front. Microbiol. 13, 856802 (2022).
-
Wang, X.-Y., Yan, J. & Xie, J. Applications of genomics, metabolomics, fourier transform infrared in the evaluation of spoilage targets of Shewanella putrefaciens from spoiled bigeye tuna. J. Agric. Food Chem. 71, 9558–9568 (2023).
-
Abril, A. G. et al. Comprehensive shotgun proteomic characterization and virulence factors of seafood spoilage bacteria. Food Chem. 448, 139045 (2024).
-
Jia, S. et al. Insights into the fish protein degradation induced by the fish-borne spoiler Pseudomonas psychrophila and Shewanella putrefaciens: from whole genome sequencing to quality changes. Int. J. Food Microbiol. 416, 110675 (2024).
-
Winzer, K., Hardie, K. R. & Williams, P. LuxS and autoinducer-2: their contribution to quorum sensing and metabolism in bacteria. Adv. Appl Microbiol. 53, 291–396 (2003).
-
Skandamis, P. N. & Nychas, G.-J. E. Quorum sensing in the context of food microbiology. Appl. Environ. Microbiol. 78, 5473–5482 (2012).
-
De Keersmaecker, S. C. J., Sonck, K. & Vanderleyden, J. Let LuxS speak up in AI-2 signaling. Trends Microbiol. 14, 114–119 (2006).
-
Chen, X. et al. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415, 545–549 (2002).
-
Miller, S. T. et al. Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Mol. Cell 15, 677–687 (2004).
-
Parker, C. T. et al. Genetic and mechanistic analyses of the periplasmic domain of the enterohemorrhagic Escherichia coli QseC histidine sensor kinase. J. Bacteriol. 199, e00861–16 (2017).
-
Dong, H., Gai, Y., Fu, S. & Zhang, D. Application of biotechnology in specific spoilage organisms of aquatic products. Front. Bioeng. Biotechnol. 10, 895283 (2022).
-
Alvarez-Ordóñez, A., Broussolle, V., Colin, P., Nguyen-The, C. & Prieto, M. The adaptive response of bacterial food-borne pathogens in the environment, host and food: implications for food safety. Int. J. Food Microbiol. 213, 99–109 (2015).
-
Jääskeläinen, E. et al. Metabolomics and bacterial diversity of packaged yellowfin tuna (Thunnus albacares) and salmon (Salmo salar) show fish species-specific spoilage development during chilled storage. Int. J. Food Microbiol. 293, 44–52 (2019).
-
Jiang, W., Hou, Y. & Inouye, M. CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J. Biol. Chem. 272, 196–202 (1997).
-
Phadtare, S. Recent developments in bacterial cold-shock response. Curr. Issues Mol. Biol. 6, 125–136 (2004).
-
Ray, S., Da Costa, R., Thakur, S. & Nandi, D. Salmonella Typhimurium encoded cold shock protein E is essential for motility and biofilm formation. Microbiology 166, 460–473 (2020).
-
Muchaamba, F., von Ah, U., Stephan, R., Stevens, M. J. A. & Tasara, T. Deciphering the global roles of Cold shock proteins in Listeria monocytogenes nutrient metabolism and stress tolerance. Front. Microbiol 13, 1057754 (2022).
-
Shimamoto, T. et al. The NhaB Na+/H+ antiporter is essential for intracellular pH regulation under alkaline conditions in Escherichia coli. J. Biochem 116, 285–290 (1994).
-
Padan, E. et al. The molecular mechanism of regulation of the NhaA Na+/H+ antiporter of Escherichia coli, a key transporter in the adaptation to Na+ and H+. Novartis Found. Symp. 221, 183–196 (1999).
-
Su, J., Gong, H., Lai, J., Main, A. & Lu, S. The potassium transporter Trk and external potassium modulate Salmonella enterica protein secretion and virulence. Infect. Immun. 77, 667–675 (2009).
-
Liu, X. et al. Role of RpoS in stress resistance, quorum sensing and spoilage potential of Pseudomonas fluorescens. Int. J. Food Microbiol. 270, 31–38 (2018).
-
Liu, X. et al. Involvement of RpoN in regulating motility, biofilm, resistance, and spoilage potential of Pseudomonas fluorescens. Front. Microbiol. 12, 641844 (2021).
-
Feng, L., Bi, W., Chen, S., Zhu, J. & Liu, X. Regulatory function of sigma factors RpoS/RpoN in adaptation and spoilage potential of Shewanella baltica. Food Microbiol. 97, 103755 (2021).
-
Shao, C. et al. LuxS-dependent AI-2 regulates versatile functions in Enterococcus faecalis V583. J. Proteome Res. 11, 4465–4475 (2012).
-
Tian, J., Liang, Y., Ragauskas, A. J., Zhong, Y. & Lin, Y. Effects of AI-2 quorum sensing inhibitors on mitigating bacterial contamination in bioethanol production. Biomass. Bioenergy 184, 107211 (2024).
-
Peng, L.-Y. et al. Anti-bacterial activity of baicalin against APEC through inhibition of quorum sensing and inflammatory responses. Sci. Rep. 9, 4063 (2019).
-
Wang, Y. et al. Genomic analysis of two histamine-producing strains isolated from yellowfin tuna. Foods 14, 1532 (2025).
-
Taga, M. E. & Xavier, K. B. Methods for analysis of bacterial autoinducer-2 production. Curr. Protoc. Microbiol. 23, 9780471729259 (2011).
-
Zou, Z. et al. A non-destructive detection method of protein and TVB-N content changes in refrigerated and frozen-thawed salmon fillets using fluorescence hyperspectral technology. J. Food Composition Anal. 133, 106435 (2024).
-
Zhao, Y. et al. Novel insight into physicochemical and flavor formation in naturally fermented tilapia sausage based on microbial metabolic network. Food Res. Int. 141, 110122 (2021).
-
Wang, D. et al. Changes in microbial composition and quality characteristics of yellowfin tuna under different storage temperature. Qual. Assur. Saf. Crops Foods 13, 54–61 (2021).
-
Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).
