Silicon nanoparticles ameliorate salt stress in cluster bean by improving antioxidant defense and ion homeostasis

silicon-nanoparticles-ameliorate-salt-stress-in-cluster-bean-by-improving-antioxidant-defense-and-ion-homeostasis
Silicon nanoparticles ameliorate salt stress in cluster bean by improving antioxidant defense and ion homeostasis

References

  1. Jukanti, A. K., Bhatt, R., Sharma, R. & Kalia, R. K. Morphological, agronomic, and yield characterization of cluster bean (Cyamopsis Tetragonoloba L.) germplasm accessions. J. Crop Sci. Biotechnol. 18 (2), 83–88. https://doi.org/10.1007/s12892-014-0092-3 (2015).

    Google Scholar 

  2. Alinia, M., Kazemeini, S. A., Meftahizadeh, H. & Mastinu, A. Alleviating salinity stress in Cyamopsis Tetragonoloba L. seedlings through foliar application of silicon or melatonin in arid and semi-desert environments. S Afr. J. Bot. 174, 347–359. https://doi.org/10.1016/j.sajb.2024.09.024 (2024).

    Google Scholar 

  3. Alinia, M., Kazemeini, S. A., Sabbaghi, S., Sayahi, S. & Abolghasemi, A. Asgari Lajayer, B. The effect of silicon–melatonin nanoparticles on improving germination parameters and reducing salinity toxicity by maintaining ion homeostasis in Cyamopsis Tetragonoloba L. seedlings. Agronomy 15 (2), 427. https://doi.org/10.3390/agronomy15020427 (2025).

    Google Scholar 

  4. Soni, S., Jha, A. B., Dubey, R. S. & Sharma, P. Nanowonders in agriculture: unveiling the potential of nanoparticles to boost crop resilience to salinity stress. Sci. Total Environ. 925, 171433. https://doi.org/10.1016/j.scitotenv.2024.171433 (2024).

    Google Scholar 

  5. Javed, S. A. et al. Optimization of nitrogen regulates the ionic homeostasis, potassium efficiency, and proline content to improve the growth, yield, and quality of maize under salinity stress. Environ. Exp. Bot. 226, 105836. https://doi.org/10.1016/j.envexpbot.2024.105836 (2024).

    Google Scholar 

  6. Kamal, M. Z. U. et al. Manure-biochar compost mitigates the soil salinity stress in tomato plants by modulating the osmoregulatory mechanism, photosynthetic pigments, and ionic homeostasis. Sci. Rep. 14 (1), 21929. https://doi.org/10.1038/s41598-024-73093-5 (2024).

    Google Scholar 

  7. Singh, A. et al. Zinc oxide nanoparticles influence on plant tolerance to salinity stress: insights into physiological, biochemical, and molecular responses. Environ. Geochem. Health. 46 (5), 148. https://doi.org/10.1007/s10653-024-01921-8 (2024).

    Google Scholar 

  8. Xiong, J. et al. Mitigation effect of exogenous nano-silicon on salt stress damage of rice seedlings. Int. J. Mol. Sci. 26 (1), 85. https://doi.org/10.3390/ijms26010085 (2024).

    Google Scholar 

  9. Naz, T., Iqbal, M. M., Ullah, I., Mubeen, M. A. & Ditta, A. Nano-silicon application enhances salt stress tolerance in Lens culinaris L.: a comparative study with bulk silicon. J. Plant. Nutr. 1–17. https://doi.org/10.1080/01904167.2025.2513404 (2025).

  10. Ali, M. et al. Silicon mediated improvement in the growth and ion homeostasis by decreasing Na+ uptake in maize (Zea Mays L.) cultivars exposed to salinity stress. Plant. Physiol. Biochem. 158, 208–218. https://doi.org/10.1016/j.plaphy.2020.10.040 (2021).

    Google Scholar 

  11. Sarkar, M. M., Mukherjee, S., Mathur, P. & Roy, S. Exogenous nano-silicon application improves ion homeostasis, osmolyte accumulation and palliates oxidative stress in Lens culinaris under NaCl stress. Plant. Physiol. Biochem. 192, 143–161. https://doi.org/10.1016/j.plaphy.2022.10.001 (2022).

    Google Scholar 

  12. He, S. et al. Nano silicon dioxide reduces cadmium uptake, regulates nutritional homeostasis and antioxidative enzyme system in barley seedlings (Hordeum vulgare L.) under cadmium stress. Environ. Sci. Pollut Res. 30 (25), 67552–67564. https://doi.org/10.1007/s11356-023-27130-x (2023).

    Google Scholar 

  13. Patel, M., Fatnani, D. & Parida, A. K. Silicon-induced mitigation of drought stress in peanut genotypes (Arachis Hypogaea L.) through ion homeostasis, modulations of antioxidative defense system, and metabolic regulations. Plant. Physiol. Biochem. 166, 290–313. https://doi.org/10.1016/j.plaphy.2021.06.003 (2021).

    Google Scholar 

  14. Mahmoud, A. W. M. et al. Nanopotassium, nanosilicon, and Biochar applications improve potato salt tolerance by modulating photosynthesis, water status, and biochemical constituents. Sustainability 14 (2), 723. https://doi.org/10.3390/su14020723 (2022).

    Google Scholar 

  15. Fan, N. et al. Nanosilicon alters oxidative stress and defence reactions in plants: A meta-analysis, mechanism and perspective. Environ. Sci. : Nano. 9 (10), 3742–3755. https://doi.org/10.1039/D2EN00478J (2022).

    Google Scholar 

  16. Huang, T., Li, Z., Long, Y., Zhang, F. & Pang, Z. Role of desorption-adsorption and ion exchange in isotopic and chemical (Li, B, and Sr) evolution of water following water–rock interaction. J. Hydrol. 610, 127800. https://doi.org/10.1016/j.jhydrol.2022.127800 (2022).

    Google Scholar 

  17. Ryżak, M. & Bieganowski, A. Methodological aspects of determining soil particle-size distribution using the laser diffraction method. J. Plant. Nutr. Soil. Sci. 174 (4), 624–633. https://doi.org/10.1002/jpln.201000255 (2011).

    Google Scholar 

  18. Hardie, M., Clothier, B., Bound, S., Oliver, G. & Close, D. Does Biochar influence soil physical properties and soil water availability? Plant. Soil. 376 (1), 347–361. https://doi.org/10.1007/s11104-013-1980-x (2014).

    Google Scholar 

  19. Ojewumi, A. W., Ayoola, S. A., Abdullahi, M. H., Adeola, Z. B. & Olubunmi, S. M. Bio-fortification of agronomic attributes and biochemical molecules in black night shade as influenced by two forms of Guinea grass Biochar. Zanco J. Pure Appl. Sci. 36 (6), 77–86 (2024).

    Google Scholar 

  20. Kazemeini, S. A., Rahimi, H. & Alinia, M. Effect of salinity stress on germination and tolerance threshold of Guar (Cyamopsis Tetragonoloba l.) seed.In: 18th Iranian National & 4th International Crop Science Congress, 10–12. (2024).

  21. Lichtenthaler, H. K. & Wellburn, A. R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 11 (5), 591–592 (1983).

    Google Scholar 

  22. Sairam, R. K., Rao, K. V. & Srivastava, G. C. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant. Sci. 163 (5), 1037–1046. https://doi.org/10.1016/S0168-9452(02)00278-9 (2002).

    Google Scholar 

  23. Chance, B. & Maehly, A. C. [136] assay of catalases and peroxidases. Methods Biochem. Anal. 1, 357–424 (1955).

    Google Scholar 

  24. Beauchamp, C. & Fridovich, I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44 (1), 276–287 (1971).

    Google Scholar 

  25. Aebi, H. [13] Catalase in vitro. In Methods in enzymology 105, 121–126. (Academic press, 1984).

  26. Yoshimura, K., Yabuta, Y., Ishikawa, T. & Shigeoka, S. Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant. Physiol. 123 (1), 223–234. https://doi.org/10.1104/pp.123.1.223 (2000).

    Google Scholar 

  27. Havaux, M. & Kloppstech, K. The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis Npq and Tt mutants. Planta 213 (6), 953–966. https://doi.org/10.1007/s004250100572 (2001).

    Google Scholar 

  28. Narayan, S., Sharma, R. K., Kumar, V., Sanyal, I. & Shirke, P. A. Alterations in plant anatomy and higher lignin synthesis provides drought tolerance in cluster bean [Cyamopsis Tetragonoloba (L.) Taub]. Plant. Physiol. Biochem. 201, 107905. https://doi.org/10.1016/j.plaphy.2023.107905 (2023).

    Google Scholar 

  29. Fattahi, S. et al. Total phenolic and flavonoid contents of aqueous extract of stinging nettle and in vitro antiproliferative effect on Hela and BT-474 cell lines. IJMCM 3 (2), 102 (2014).

    Google Scholar 

  30. Velikova, V., Yordanov, I. & Edreva, A. J. P. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant. Sci. 151 (1), 59–66. https://doi.org/10.1016/S0168-9452(99)00197-1 (2000).

    Google Scholar 

  31. Heath, R. L. & Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125 (1), 189–198. https://doi.org/10.1016/0003-9861(68)90654-1 (1968).

    Google Scholar 

  32. Golmakani, M. T., Mendiola, J. A., Rezaei, K. & Ibáñez, E. Expanded ethanol with CO2 and pressurized Ethyl lactate to obtain fractions enriched in γ-Linolenic acid from Arthrospira platensis (Spirulina). J. Supercrit Fluids. 62, 109–115. https://doi.org/10.1016/j.supflu.2011.11.026 (2012).

    Google Scholar 

  33. Mony, C. et al. Nanomaterials for enhancing photosynthesis: interaction with plant photosystems and scope of nanobionics in agriculture. Environ. Sci. : Nano. 9 (10), 3659–3683. https://doi.org/10.1039/D2EN00451H (2022).

    Google Scholar 

  34. Morshedloo, M. R., Saeidi, S., Zahedi, S. M., Jahantab, E. & Ghorbanpour, M. Foliar-applied silicon and nano-silicon alter the product quality and defense system in ginger mint (Mentha gracilis R. Br.) under drought stress by inducing essential oil accumulation and antioxidant activity. J. Soil. Sci. Plant. Nutr. 25 (1), 1913–1926. https://doi.org/10.1007/s42729-025-02245-x (2025).

    Google Scholar 

  35. Farhangi-Abriz, S. & Torabian, S. Nano-silicon alters antioxidant activities of soybean seedlings under salt toxicity. Protoplasma 255 (3), 953–962. https://doi.org/10.1007/s00709-017-1202-0 (2018).

    Google Scholar 

  36. Sohby, M. K., Khalil, H. A., Eissa, A. M. & Fekry, W. M. Influence of nano-silicon and nano-chitosan on growth, ion content, and antioxidant defense enzyme of two citrus rootstocks under salinity conditions. Mesop. J. Agric. 51 (2), 147–166 (2023).

    Google Scholar 

  37. Abd-El-Aty, M. S., Kamara, M. M., Elgamal, W. H., Mesbah, M. I., Abomarzoka, E. A.,Alwutayd, K. M. Abdelaal, K. Exogenous application of nano-silicon, potassium sulfate,or proline enhances physiological parameters, antioxidant enzyme activities, and agronomic traits of diverse rice genotypes under water deficit conditions. Heliyon 10 (5). https://doi.org/10.1016/j.heliyon.2024.e26077 (2024).

  38. Abdi, M. J., Ghanbari Jahromi, M., Mortazavi, S. N., Jari, K., Nazarideljou, M. J. & S. & Foliar-applied silicon and selenium nanoparticles modulated salinity stress through modifying yield, biochemical attribute, and fatty acid profile of Physalis Alkekengi L. Environ. Sci. Pollut Res. 30 (45), 100513–100525. https://doi.org/10.1007/s11356-023-29450-4 (2023).

    Google Scholar 

  39. Hajihashemi, S. & Kazemi, S. The potential of foliar application of nano-chitosan-encapsulated nano-silicon donor in amelioration the adverse effect of salinity in the wheat plant. BMC Plant. Biol. 22 (1), 148. https://doi.org/10.1186/s12870-022-03531-x (2022).

    Google Scholar 

  40. Xiao, Z., Fan, N., Yue, L., Chen, F., Ji, H., Shu, Y. Wang, Z. Dose-dependent effects of CeO2 nanomaterials on tomato plant chemistry and insect herbivore resistance. Environ. Sci. Nano. 8 (12), 3577–3589. https://doi.org/10.1039/D1EN00837D (2021).

  41. Sepasi, M., Iranbakhsh, A., Saadatmand, S., Ebadi, M. & Oraghi Ardebili, Z. Silicon nanoparticles (SiNPs) stimulated secondary metabolism and mitigated toxicity of salinity stress in Basil (Ocimum Basilicum) by modulating gene expression: a sustainable approach for crop protection. Environ. Sci. Pollut Res. 31 (11), 16485–16496. https://doi.org/10.1007/s11356-024-32260-x (2024).

    Google Scholar 

  42. Mostafavi, S., Tavallali, V., Asadi-Gharneh, H. A. & Rowshan, V. Modulation of polyphenolic Content, essential Oils, and antioxidant activity in Zataria multiflora by Silicon-Based nanocomplexes. BioNanoSci 15 (3), 493. https://doi.org/10.1007/s12668-025-01953-z (2025).

    Google Scholar 

  43. Waters, S., Gilliham, M. & Hrmova, M. Plant high-affinity potassium (HKT) transporters involved in salinity tolerance: structural insights to probe differences in ion selectivity. Int. J. Mol. Sci. 14 (4), 7660–7680. https://doi.org/10.3390/ijms14047660 (2013).

    Google Scholar 

  44. Liu, B., Soundararajan, P. & Manivannan, A. Mechanisms of silicon-mediated amelioration of salt stress in plants. Plants 8 (9), 307. https://doi.org/10.3390/plants8090307 (2019).

    Google Scholar 

  45. Wang, Q., Shan, C., Zhang, P., Zhao, W., Zhu, G., Sun, Y.Rui, Y. The combination of nanotechnology and potassium: applications in agriculture. Environ. Sci. Pollut. Res. 31 (2), 1890–1906. https://doi.org/10.1007/s11356-023-31207-y (2024).

  46. Gharbi, P., Amiri, J., Mahna, N., Naseri, L. & Sadaghiani, M. R. Silicon-induced mitigation of salt stress in GF677 and GN15 rootstocks: insights into physiological, biochemical, and molecular mechanisms. BMC Plant. Biol. 25 (1), 719. https://doi.org/10.1186/s12870-025-06753-x (2025).

    Google Scholar 

  47. Alves, D. M. R., de Mello Prado, R. & Barreto, R. F. & Da Silva Carvalho, L. T. Nano-silicon and sodium mitigate Damage by potassium deficiency in Chicory. Sci. Rep. 14 (1), 16841. https://doi.org/10.1038/s41598-024-67875-0 (2024).

    Google Scholar 

  48. Rezghiyan, A., Esmaeili, H. & Farzaneh, M. Nanosilicon application changes the morphological attributes and essential oil compositions of hemp (Cannabis sativa L.) under water deficit stress. Sci. Rep. 15 (1), 3400. https://doi.org/10.1038/s41598-025-87611-6 (2025).

    Google Scholar 

Download references