Enhancing wound healing with synergistic dual-drug electrospun roflumilast and L-arginine loaded PLA/PVA nanofibers through fabrication, optimization, and in vivo assessment

enhancing-wound-healing-with-synergistic-dual-drug-electrospun-roflumilast-and-l-arginine-loaded-pla/pva-nanofibers-through-fabrication,-optimization,-and-in-vivo-assessment
Enhancing wound healing with synergistic dual-drug electrospun roflumilast and L-arginine loaded PLA/PVA nanofibers through fabrication, optimization, and in vivo assessment

References

  1. Tottoli, E. M. et al. Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration. Pharmaceutics 12, 735. (2020). https://doi.org/10.3390/PHARMACEUTICS12080735

  2. Rousselle, P., Braye, F. & Dayan, G. Re-epithelialization of adult skin wounds: cellular mechanisms and therapeutic strategies. Adv. Drug Deliv Rev. 146, 344–365. https://doi.org/10.1016/J.ADDR.2018.06.019 (2019).

    Google Scholar 

  3. Rezvani Ghomi, E. et al. Advances in electrospinning of aligned nanofiber scaffolds used for wound dressings. Curr. Opin. Biomed. Eng. 22, 100393. https://doi.org/10.1016/J.COBME.2022.100393 (2022).

    Google Scholar 

  4. Mir, M. et al. Synthetic polymeric biomaterials for wound healing: a review. Prog Biomater. 7, 1. https://doi.org/10.1007/S40204-018-0083-4 (2018).

    Google Scholar 

  5. Savencu, I., Iurian, S., Porfire, A., Bogdan, C. & Tomuță, I. Review of advances in polymeric wound dressing films. React. Funct. Polym. 168, 105059. https://doi.org/10.1016/J.REACTFUNCTPOLYM.2021.105059 (2021).

    Google Scholar 

  6. Ho, T. C. et al. Hydrogels: properties and applications in biomedicine. Molecules 27, 2902. https://doi.org/10.3390/MOLECULES27092902 (2022).

    Google Scholar 

  7. Jiang, Z. et al. Nanofiber Scaffolds as Drug Delivery Systems Promoting Wound Healing. Pharmaceutics 15, 1829 (2023). https://doi.org/10.3390/PHARMACEUTICS15071829

  8. Eissa, N. G. & Elsabahy, M. Applying drug-loaded electrospun nanofibers to antimicrobial-resistant skin infections. Nanomedicine https://doi.org/10.1080/17435889.2025.2528592 (2025).

    Google Scholar 

  9. Kamoun, E. A. et al. Recent progress of Polymer-Based biosensors for cancer diagnostic applications: natural versus synthetic polymers. ACS Omega. https://doi.org/10.1021/acsomega.4c10652 (2025).

    Google Scholar 

  10. Goher, S. S. et al. Electrospun tamarindus indica-loaded antimicrobial PMMA/cellulose acetate/PEO nanofibrous scaffolds for accelerated wound healing: In-vitro and in-vivo assessments. Int. J. Biol. Macromol. 258, 128793. https://doi.org/10.1016/J.IJBIOMAC.2023.128793 (2024).

    Google Scholar 

  11. Abdelazim, E. B. et al. In vitro and in vivo studies of syzygium cumini-loaded electrospun PLGA/PMMA/collagen nanofibers for accelerating topical wound healing. RSC Adv. 14, 101–117. https://doi.org/10.1039/D3RA06355K (2024).

    Google Scholar 

  12. Vatanpour, V., Teber, O. O., Mehrabi, M. & Koyuncu, I. Polyvinyl alcohol-based separation membranes: a comprehensive review on fabrication techniques, applications and future prospective. Mater. Today Chem. 28, 101381. https://doi.org/10.1016/J.MTCHEM.2023.101381 (2023).

    Google Scholar 

  13. Jin, S. G. Production and application of biomaterials based on Polyvinyl alcohol (PVA) as wound dressing. Chem. Asian J. 17, e202200595. https://doi.org/10.1002/ASIA.202200595 (2022).

    Google Scholar 

  14. Maleki, H., Azimi, B., Ismaeilimoghadam, S. & Danti, S. Poly(lactic acid)-Based Electrospun Fibrous Structures for Biomedical Applications, Appl. Sci. 12, 3192 (2022). https://doi.org/10.3390/APP12063192

  15. Pesaranhajiabbas, E., Misra, M. & Mohanty, A. K. Recent progress on biodegradable polylactic acid based blends and their biocomposites: A comprehensive review. Int. J. Biol. Macromol. 253, 126231. https://doi.org/10.1016/J.IJBIOMAC.2023.126231 (2023).

    Google Scholar 

  16. Elsayed, R. E., Madkour, T. M. & Azzam, R. A. Tailored-design of electrospun nanofiber cellulose acetate/poly(lactic acid) dressing Mats loaded with a newly synthesized sulfonamide analog exhibiting superior wound healing. Int. J. Biol. Macromol. 164, 1984–1999. https://doi.org/10.1016/J.IJBIOMAC.2020.07.316 (2020).

    Google Scholar 

  17. Ebrahimi, F., Ramezani, H. & Dana Poly lactic acid (PLA) polymers: from properties to biomedical applications. Int. J. Polym. Mater. Polym. Biomaterials. 71, 1117–1130. https://doi.org/10.1080/00914037.2021.1944140 (2022).

    Google Scholar 

  18. Chen, H. L., Chung, J. W. Y., Yan, V. C. M. & Wong, T. K. S. Polylactic Acid-Based biomaterials in wound healing: A systematic review. Adv. Skin. Wound Care. 36 https://doi.org/10.1097/ASW.0000000000000011 (2023).

  19. Lu, X., Zhou, L. & Song, W. Recent progress of electrospun nanofiber dressing in the promotion of wound healing. Polym. (Basel). 16, 2596. https://doi.org/10.3390/POLYM16182596 (2024).

    Google Scholar 

  20. Christie, P. Roflumilast: a selective phosphodiesterase 4 inhibitor. Drugs Today (Barc). 41, 667–675. https://doi.org/10.1358/DOT.2005.41.10.920428 (2005).

    Google Scholar 

  21. Gyldenløve, M. et al. Efficacy and safety of oral Roflumilast for moderate-to-severe psoriasis—a randomized controlled trial (PSORRO), the lancet regional. Health – Europe. 30 https://doi.org/10.1016/j.lanepe.2023.100639 (2023).

  22. Wedzicha, J. A., Calverley, P. M. & Rabe, K. F. Roflumilast: A review of its use in the treatment of COPD. Int. J. COPD. 11, 81–90. https://doi.org/10.2147/COPD.S89849 (2016).

    Google Scholar 

  23. Zhang, X. et al. Pharmacological mechanism of Roflumilast in the treatment of asthma–COPD overlap. Drug Des. Devel Ther. 12, 2371. https://doi.org/10.2147/DDDT.S165161 (2018).

    Google Scholar 

  24. Zhong, B. et al. Roflumilast reduced the IL-18-Induced inflammatory response in Fibroblast-Like synoviocytes (FLS). ACS Omega. 6, 2149. https://doi.org/10.1021/ACSOMEGA.0C05281 (2021).

    Google Scholar 

  25. Balakrishnan, B., Mohanty, M., Fernandez, A. C., Mohanan, P. V. & Jayakrishnan, A. Evaluation of the effect of incorporation of Dibutyryl Cyclic adenosine monophosphate in an in situ-forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 27, 1355–1361. https://doi.org/10.1016/J.BIOMATERIALS.2005.08.021 (2006).

    Google Scholar 

  26. Ahmed, M. M. et al. Development of Apremilast Nanoemulsion-Loaded Chitosan Gels: In Vitro Evaluations and Anti-Inflammatory and Wound Healing Studies on a Rat Model. Gels. 8, 253 (2022). https://doi.org/10.3390/GELS8050253

  27. Dioguardi, F. S., Corsetti, G., Szlas, A., Kurek, J. M. & Krejpcio, Z. The potential of L-Arginine in prevention and treatment of disturbed carbohydrate and lipid Metabolism—A. Rev. Nutrients 2022. 14, 961. https://doi.org/10.3390/NU14050961 (2022).

    Google Scholar 

  28. Morris, S. M. Arginine: beyond protein. Am. J. Clin. Nutr. 83, 508S–512. https://doi.org/10.1093/AJCN/83.2.508S (2006). S.

    Google Scholar 

  29. Oyovwi, M. O. & Atere, A. D. Exploring the medicinal significance of l-Arginine mediated nitric oxide in preventing health disorders. Eur. J. Med. Chem. Rep. 12, 100175. https://doi.org/10.1016/J.EJMCR.2024.100175 (2024).

    Google Scholar 

  30. McKay, T. B., Priyadarsini, S., Rowsey, T. & Karamichos, D. Arginine supplementation promotes extracellular matrix and metabolic changes in keratoconus. Cells 10, 2076. https://doi.org/10.3390/CELLS10082076/S1 (2021).

    Google Scholar 

  31. Hussein, Y. et al. Electrospun PVA/hyaluronic acid/L-arginine nanofibers for wound healing applications: nanofibers optimization and in vitro bioevaluation. Int. J. Biol. Macromol. 164, 667–676. https://doi.org/10.1016/j.ijbiomac.2020.07.126 (2020).

    Google Scholar 

  32. Wu, M. et al. Recent advances in the development of nitric oxide-releasing biomaterials and their application potentials in chronic wound healing. J. Mater. Chem. B. 9, 7063–7075. https://doi.org/10.1039/D1TB00847A (2021).

    Google Scholar 

  33. Wu, G., Meininger, C. J., McNeal, C. J., Bazer, F. W. & Rhoads, J. M. Role of L-Arginine in nitric oxide synthesis and health in humans. In Amino Acids in Nutrition and Health: Amino Acids in Gene Expression, Metabolic Regulation, and Exercising Performance (ed. Wu, G.) 167–187 (Springer International Publishing, 2021). https://doi.org/10.1007/978-3-030-74180-8_10.

    Google Scholar 

  34. Elbadry, A. M. M., Gomaa, E., Faisal, M. M., Kamoun, E. A. & Salim, S. A. Smart dressings accelerating wound healing with Tranexamic acid-infused aligned electrospun nanofibers: in vitro and in vivo assessments. J. Drug Deliv Sci. Technol. 114, 107542. https://doi.org/10.1016/j.jddst.2025.107542 (2025).

    Google Scholar 

  35. Fatahian, R. & Erfani, R. Surrogate modeling of electrospun PVA/PLA nanofibers using artificial neural network for biomedical applications. Sci. Rep. 15, 12886 (2025). https://doi.org/10.1038/s41598-025-94608-8

  36. Zhong, G. et al. Fabrication and characterization of PVA@PLA electrospinning nanofibers embedded with Bletilla striata polysaccharide and Rosmarinic acid to promote wound healing. Int. J. Biol. Macromol. 234, 123693. https://doi.org/10.1016/J.IJBIOMAC.2023.123693 (2023).

    Google Scholar 

  37. Brown, W. M. Treating COPD with PDE 4 inhibitors. Int. J. Chron. Obstruct Pulmon Dis. 2, 517 (2007). https://pmc.ncbi.nlm.nih.gov/articles/PMC2699952/ accessed December 22, 2025.

    Google Scholar 

  38. Ashraf, H., Salim, S. A., EL-Moslamy, S. H., Loutfy, S. A. & Kamoun, E. A. An injectable in situ forming Collagen/Alginate/CaSO4 composite hydrogel for tissue engineering applications: Optimization, characterization and in vitro assessments. Arab. J. Sci. Eng. https://doi.org/10.1007/s13369-024-08922-w (2024).

    Google Scholar 

  39. Ibrahim, R. M. et al. Cutting-edge biomaterials for advanced biomedical uses: self-gelation of l-arginine-loaded chitosan/PVA/vanillin hydrogel for accelerating topical wound healing and skin regeneration. RSC Adv. 14, 31126–31142. https://doi.org/10.1039/d4ra04430d (2024).

    Google Scholar 

  40. Mirmajidi, T., Chogan, F., Rezayan, A. H. & Sharifi, A. M. In vitro and in vivo evaluation of a nanofiber wound dressing loaded with melatonin. Int. J. Pharm. 596, 120213. https://doi.org/10.1016/j.ijpharm.2021.120213 (2021).

    Google Scholar 

  41. Higashi, S., Hirai, T., Matsubara, M., Yoshida, H. & Beniya, A. Dynamic viscosity recovery of electrospinning solution for stabilizing elongated ultrafine polymer nanofiber by TEMPO-CNF. Sci. Rep. 10, 1–8. https://doi.org/10.1038/S41598-020-69136-2;SUBJMETA (2020).

    Google Scholar 

  42. Xue, J., Wu, T., Dai, Y. & Xia, Y. Electrospinning and electrospun nanofibers: Methods, Materials, and applications. Chem. Rev. 119, 5298. https://doi.org/10.1021/ACS.CHEMREV.8B00593 (2019).

    Google Scholar 

  43. Nguyen, T. T. T., Ghosh, C., Hwang, S. G., Tran, L. D. & Park, J. S. Characteristics of curcumin-loaded Poly (lactic acid) nanofibers for wound healing. J. Mater. Sci. 48, 7125–7133. https://doi.org/10.1007/S10853-013-7527-Y/FIGURES/8 (2013).

    Google Scholar 

  44. Liu, Y., Liang, X., Wang, S., Qin, W. & Zhang, Q. Electrospun Antimicrobial Polylactic Acid/Tea Polyphenol Nanofibers for Food-Packaging Applications. Polymers 10, 561 (2018). https://doi.org/10.3390/POLYM10050561

  45. Hashmi, M., Ullah, S. & Kim, I. S. Electrospun momordica Charantia incorporated Polyvinyl alcohol (PVA) nanofibers for antibacterial applications. Mater. Today Commun. 24, 101161. https://doi.org/10.1016/J.MTCOMM.2020.101161 (2020).

    Google Scholar 

  46. Ge, J. C., Wu, G., Yoon, S. K., Kim, M. S. & Choi, N. J. Study on the Preparation and Lipophilic Properties of Polyvinyl Alcohol (PVA) Nanofiber Membranes via Green Electrospinning, Nanomaterials 11, 2514 (2021). https://doi.org/10.3390/NANO11102514

  47. Abd El-aziz, A. M., El-Maghraby, A. & Taha, N. A. Comparison between Polyvinyl alcohol (PVA) nanofiber and Polyvinyl alcohol (PVA) nanofiber/hydroxyapatite (HA) for removal of Zn2 + ions from wastewater. Arab. J. Chem. 10, 1052–1060. https://doi.org/10.1016/J.ARABJC.2016.09.025 (2017).

    Google Scholar 

  48. Maded, Z. K. et al. Development and optimization of Dipyridamole- and Roflumilast-Loaded nanoemulsion and nanoemulgel for enhanced skin permeation: Formulation, Characterization, and in vitro assessment. Pharmaceuticals 17, 803. https://doi.org/10.3390/PH17060803/S1 (2024).

    Google Scholar 

  49. Ali, F., Kumar, R., Sahu, P. L. & Singh, G. N. Physicochemical characterization and compatibility study of Roflumilast with various pharmaceutical excipients. J. Therm. Anal. Calorim. 130, 1627–1641. https://doi.org/10.1007/S10973-017-6274-8/TABLES/4 (2017).

    Google Scholar 

  50. Lv, J. et al. Deep eutectic solvents based on L-Arginine and 2-Hydroxypropyl-β-Cyclodextrin for drug carrier and penetration enhancement. AAPS PharmSciTech. 24, 1–12. https://doi.org/10.1208/S12249-023-02638-0/TABLES/3 (2023).

    Google Scholar 

  51. Mohammadian, F. & Eatemadi, A. Drug loading and delivery using nanofibers scaffolds. Artif. Cells Nanomed. Biotechnol. 45, 881–888. https://doi.org/10.1080/21691401.2016.1185726 (2017).

    Google Scholar 

  52. Elbadry, A. M. M. et al. Enhancing topical delivery of N-acetylcysteine and collagen via a novel electrospun collagen/PMMA nanofibrous Mats as facial mask development: nanofibers optimization and in vitro experiments. J. Drug Deliv Sci. Technol. 104 https://doi.org/10.1016/j.jddst.2024.106566 (2025).

  53. Roflumilast crystal form compound, preparation method, composition and applications thereof. (2011).

  54. Mahmoud, A. A., Elkasabgy, N. A. & Abdelkhalek, A. A. Design and characterization of emulsified spray dried alginate microparticles as a carrier for the dually acting drug Roflumilast. Eur. J. Pharm. Sci. 122, 64–76. https://doi.org/10.1016/J.EJPS.2018.06.015 (2018).

    Google Scholar 

  55. Mallik, T. & Kar, T. Growth and characterization of nonlinear optical l-arginine dihydrate single crystals. J. Cryst. Growth. 285, 178–182. https://doi.org/10.1016/J.JCRYSGRO.2005.08.025 (2005).

    Google Scholar 

  56. Yu, D. G., Li, J. J., Williams, G. R. & Zhao, M. Electrospun amorphous solid dispersions of poorly water-soluble drugs: A review. J. Controlled Release. 292, 91–110. https://doi.org/10.1016/J.JCONREL.2018.08.016 (2018).

    Google Scholar 

  57. Huo, P. et al. Electrospun Nanofibers of Polycaprolactone/Collagen as a Sustained-Release Drug Delivery System for Artemisinin. Pharmaceutics 13(13), 1228. https://doi.org/10.3390/PHARMACEUTICS13081228 (2021).

    Google Scholar 

  58. de Mohac, L. M., Keating, A. V., de F. Pina, M. & Raimi-Abraham, B. T. Engineering of nanofibrous amorphous and crystalline solid dispersions for oral drug delivery. Pharmaceutics 11, 7. https://doi.org/10.3390/PHARMACEUTICS11010007 (2018).

    Google Scholar 

  59. Mirzaeei, S., Taghe, S., Asare-Addo, K. & Nokhodchi, A. Polyvinyl Alcohol/Chitosan Single-Layered and Polyvinyl Alcohol/Chitosan/Eudragit RL100 Multi-layered electrospun nanofibers as an ocular matrix for the controlled release of ofloxacin: an in vitro and. Vivo Evaluation AAPS PharmSciTech. 22, 1–13. https://doi.org/10.1208/S12249-021-02051-5/TABLES/2 (2021).

    Google Scholar 

  60. Çay, A. & Miraftab, M. Perrin Akçakoca Kumbasar, characterization and swelling performance of physically stabilized electrospun poly(vinyl alcohol)/chitosan nanofibres. Eur. Polym. J. 61, 253–262. https://doi.org/10.1016/J.EURPOLYMJ.2014.10.017 (2014).

    Google Scholar 

  61. Karami, Z., Rezaeian, I., Zahedi, P. & Abdollahi, M. Preparation and performance evaluations of electrospun poly(ε-caprolactone), poly(lactic acid), and their hybrid (50/50) nanofibrous Mats containing thymol as an herbal drug for effective wound healing. J. Appl. Polym. Sci. 129, 756–766. https://doi.org/10.1002/APP.38683 (2013).

    Google Scholar 

  62. Protsak, I. S. & Morozov, Y. M. Fundamentals and Advances in Stimuli-Responsive Hydrogels and Their Applications: A Review, Gels, 11, 30 (2025). https://doi.org/10.3390/GELS11010030

  63. Sill, T. J. & von Recum, H. A. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29, 1989–2006. https://doi.org/10.1016/J.BIOMATERIALS.2008.01.011 (2008).

    Google Scholar 

  64. Annabi, N. et al. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. Part. B Rev. 16, 371. https://doi.org/10.1089/TEN.TEB.2009.0639 (2010).

    Google Scholar 

  65. Roy, S. G., Haldar, U. & De, P. Remarkable swelling capability of amino acid based cross-linked polymer networks in organic and aqueous medium. ACS Appl. Mater. Interfaces. 6, 4233–4241. https://doi.org/10.1021/AM405932F/SUPPL_FILE/AM405932F_SI_001.PDF (2014).

    Google Scholar 

Download references