References
-
Hajela, N. et al. Gut microbiome, gut function, and probiotics: Implications for health. Indian J. Gastroenterol. 34, 93–107 (2015).
-
Di Sabatino, A., Santacroce, G., Rossi, C. M., Broglio, G. & Lenti, M. V. Role of mucosal immunity and epithelial–vascular barrier in modulating gut homeostasis. Intern. Emerg. Med. 18, 1635–1646 (2023).
-
Al-Fakhrany, O. M. & Elekhnawy, E. Next-generation probiotics: The upcoming biotherapeutics. Mol. Biol. Rep. 51, 505 (2024).
-
Ali, M. A. et al. Functional dairy products as a source of bioactive peptides and probiotics: Current trends and future prospectives. J. Food Sci. Technol. 59, 1263–1279 (2022).
-
Vasiee, A. R., Yazdi, T., Mortazavi, F. & Edalatian, M. R. A. Isolation, identification and characterization of probiotic Lactobacilli spp. from Tarkhineh. Inte. Food Res. J. 21 (2014).
-
Vasiee, A., Falah, F., Behbahani, B. A. & Tabatabaee-Yazdi, F. Probiotic characterization of Pediococcus strains isolated from Iranian cereal-dairy fermented product: Interaction with pathogenic bacteria and the enteric cell line Caco-2. J. Biosci. Bioeng. 130, 471–479 (2020).
-
Vasiee, A., Falah, F. & Mortazavi, S. A. Evaluation of probiotic potential of autochthonous lactobacilli strains isolated from Zabuli yellow kashk, an Iranian dairy product. J. Appl. Microbiol. 133, 3201–3214 (2022).
-
Bisson, G., Maifreni, M., Innocente, N. & Marino, M. Application of pre-adaptation strategies to improve the growth of probiotic lactobacilli under food-relevant stressful conditions. Food Funct. 14, 2128–2137 (2023).
-
Hossain, T. J., Khan, M. S. & Ferdouse, J. Fermented and dairy beverages of Bangladesh: A rich source of probiotic lactic acid bacteria. Food Sci. Appl. Biotechnol. 7 (2024).
-
Ferdouse, J. et al. Probiotic characteristics of Pediococcus pentosaceus and Apilactobacillus kunkeei strains: The lactic acid bacteria isolated from Bangladeshi Natural honey. Appl. Food Biotechnol. 10, 33–45 (2023).
-
de Melo Pereira, G. V., de Oliveira Coelho, B., Magalhães Júnior, A. I., Thomaz-Soccol, V. & Soccol, C. R. How to select a probiotic? A review and update of methods and criteria. Biotechnol. Adv. 36, 2060–2076 (2018).
-
Pato, U. et al. Comparison of probiotic properties between free cells and encapsulated cells of Limosilactobacillus fermentum InaCC B1295. AIMS Agric. Food 9, 483–499 (2024).
-
Pradhan, D., Mallappa, R. H. & Grover, S. Comprehensive approaches for assessing the safety of probiotic bacteria. Food Control 108, 106872 (2020).
-
Hossain, T. J. Functional genomics of the lactic acid bacterium Limosilactobacillus fermentum LAB-1: metabolic, probiotic and biotechnological perspectives. Heliyon 8, (2022).
-
Tarannum, N. et al. Antioxidant, antimicrobial and emulsification properties of exopolysaccharides from lactic acid bacteria of bovine milk: Insights from biochemical and genomic analysis. LWT 186, 115263 (2023).
-
Chugh, B. & Kamal-Eldin, A. Bioactive compounds produced by probiotics in food products. Curr. Opin. Food Sci. 32, 76–82 (2020).
-
Sarika, A. R., Lipton, A. P. & Aishwarya, M. S. Biopreservative efficacy of bacteriocin GP1 of Lactobacillus rhamnosus GP1 on stored fish filets. Front. Nutr. 6 (2019).
-
Hossain, T. J. et al. Hydrolytic exoenzymes produced by bacteria isolated and identified from the gastrointestinal tract of Bombay duck. Front. Microbiol. 11 (2020).
-
Pompilio, A. et al. Cell-free supernatants from Lactobacillus strains exert antibacterial, antibiofilm, and antivirulence activity against Pseudomonas aeruginosa from cystic fibrosis patients. Microbes Infect. 26, 105301 (2024).
-
Hossain, T. J. Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations. Eur. J. Microbiol. Immunol. https://doi.org/10.1556/1886.2024.00035 (2024).
-
Ali, F. et al. Production optimization, stability and oil emulsifying potential of biosurfactants from selected bacteria isolated from oil-contaminated sites. R. Soc. Open Sci. 8, 211003 (2021).
-
Zhang, Q. et al. In vitro investigation on lactic acid bacteria isolatedfrom Yak faeces for potential probiotics. Front. Cell. Infect. Microbiol. 12, 984537 (2022).
-
Aziz, T. et al. Assessing the probiotic potential, antioxidant, and antibacterial activities of oat and soy milk fermented with Lactiplantibacillus plantarum strains isolated from Tibetan Kefir. Front. Microbiol. 14, 1265188 (2023).
-
Zan, L. et al. Screening, characterization and probiotic properties of selenium-enriched lactic acid bacteria. Fermentation 10, 39 (2024).
-
Zommara, M., El-Ghaish, S., Haertle, T., Chobert, J.-M. & Ghanimah, M. Probiotic and technological characterization of selected Lactobacillus strains isolated from different Egyptian cheeses. BMC Microbiol. 23, 160 (2023).
-
Dowarah, R., Verma, A. K., Agarwal, N., Singh, P. & Singh, B. R. Selection and characterization of probiotic lactic acid bacteria and its impact on growth, nutrient digestibility, health and antioxidant status in weaned piglets. PLoS One 13, e0192978 (2018).
-
Rokana, N. et al. Screening of cell surface properties of potential probiotic lactobacilli isolated from human milk. J. Dairy Res. 85, 347–354 (2018).
-
Wang, J., Zhao, X., Yang, Y., Zhao, A. & Yang, Z. Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. Int. J. Biol. Macromol. 74, 119–126 (2015).
-
Prabhurajeshwar, C. & Chandrakanth, R. K. Probiotic potential of Lactobacilli with antagonistic activity against pathogenic strains: An in vitro validation for the production of inhibitory substances. Biomed. J. 40, 270–283 (2017).
-
Mondal, H., Thomas, J. & Amaresan, N. Assay of Hemolytic Activity. In Aquaculture Microbiology (eds Thomas, J. & Amaresan, N.) 187–189 (Springer, 2023). https://doi.org/10.1007/978-1-0716-3032-7_24.
-
Huligere, S. S. Isolation and characterization of lactic acid bacteria with potential probiotic activity and further investigation of their activity by α-amylase and α-glucosidase inhibitions of fermented batters. Front. Microbiol. https://doi.org/10.3389/fmicb.2022.1042263 (2023).
-
Yang, S. et al. Antimicrobial activity against Staphylococcus aureus and genome features of Lactiplantibacillus plantarum LR-14 from Sichuan pickles. Arch. Microbiol. 204, 637 (2022).
-
Pakroo, S. et al. Limosilactobacillus fermentum ING8, a potential multifunctional non-starter strain with relevant technological properties and antimicrobial activity. Foods 11, 703 (2022).
-
Falah, F. et al. Evaluation of adherence and anti-infective properties of probiotic Lactobacillus fermentum strain 4–17 against Escherichia coli causing urinary tract infection in humans. Microb. Pathog. 131, 246–253 (2019).
-
Vasiee, A., Alizadeh Behbahani, B., Tabatabaei Yazdi, F., Mortazavi, S. A. & Noorbakhsh, H. Diversity and probiotic potential of lactic acid bacteria isolated from Horreh, a traditional Iranian fermented food. Probiotics Antimicrob. Proteins 10, 258–268 (2018).
-
Popova-Krumova, P., Danova, S., Atanasova, N. & Yankov, D. Lactic Acid Production by Lactiplantibacillus plantarum AC 11S—Kinetics and Modeling. Microorganisms 12, 739 (2024).
-
Racines, M. P. et al. An overview of the use and applications of limosilactobacillus fermentum in broiler chickens. Microorganisms 11, 1944 (2023).
-
Namshir, B. et al. Fermentation and functional properties of plant-derived Limosilactobacillus fermentum for dairy applications. Fermentation 11, 286 (2025).
-
dos Santos, C. I. et al. Genomic analysis of Limosilactobacillus fermentum ATCC 23271, a potential probiotic strain with anti-Candida activity. J. Fungi 7, 794 (2021).
-
Farhangfar, A., Gandomi, H., Akhondzadeh Basti, A., Misaghi, A. & Noori, N. Study of growth kinetic and gastrointestinal stability of acid-bile resistant Lactobacillus plantarum strains isolated from Siahmazgi traditional cheese. Vet. Res. Forum 12, 235–240 (2021).
-
Megur, A. In vitro screening and characterization of lactic acid bacteria from Lithuanian fermented food with potential probiotic properties. Front. Microbiol. https://doi.org/10.3389/fmicb.2023.1213370 (2023).
-
Irfan, H. et al. Functional genomics and probiotic traits of Lactiplantibacillus plantarum MB685 from fermented broccoli: Gut health and metabolic insights. Mol. Nutr. Food Res. e70209. https://doi.org/10.1002/mnfr.70209 (2025).
-
Domínguez-Avila, J. A. et al. Phenolic compounds promote diversity of gut microbiota and maintain colonic health. Dig. Dis. Sci. 66, 3270–3289 (2021).
-
Saito, Y., Sato, T., Nomoto, K. & Tsuji, H. Identification of phenol- and p-cresol-producing intestinal bacteria by using media supplemented with tyrosine and its metabolites. FEMS Microbiol. Ecol. 94, fiy125 (2018).
-
Yadav, R., Puniya, A. K. & Shukla, P. Probiotic Properties of Lactobacillus plantarum RYPR1 from an Indigenous Fermented Beverage Raabadi. Front Microbiol 7, (2016).
-
Bezkorovainy, A. Probiotics: determinants of survival and growth in the gut123. Am. J. Clin. Nutr. 73, 399s–405s (2001).
-
Darmastuti, A. et al. Adhesion properties of Lactobacillus plantarum Dad-13 and Lactobacillus plantarum Mut-7 on Sprague Dawley rat intestine. Microorganisms 9, 2336 (2021).
-
Alizadeh Behbahani, B., Rahmati-Joneidabad, M. & Taki, M. Examining the impact of probiotic Lactiplantibacillus pentosus 6MMI on inhibiting biofilm formation, adhesion, and virulence gene expression in Listeria monocytogenes ATCC 19115. Biofilm 9, 100255 (2025).
-
Farid, W. et al. Gastrointestinal transit tolerance, cell surface hydrophobicity, and functional attributes of Lactobacillus acidophilus strains isolated from Indigenous Dahi. Food Sci. Nutr. 9, 5092–5102 (2021).
-
Suwannaphan, S. Isolation, identification and potential probiotic characterization of lactic acid bacteria from Thai traditional fermented food. AIMS Microbiol. 7, 431 (2021).
-
Pato, U., Yusuf, Y., Riftyan, E. & Rossi, E. Comparison of probiotic properties between free cells and encapsulated cells of Limosilactobacillus fermentum InaCC B1295. AIMS Agric. & Food 9, (2024).
-
Sohn, H. et al. Probiotic properties of Lactiplantibacillus plantarum LB5 isolated from Kimchi based on nitrate reducing capability. Foods 9, 1777 (2020).
-
Noshad, M., Alizadeh Behbahani, B. & Hojjati, M. Investigation of probiotic and technological characteristics of lactic acid bacteria isolated from native Doogh of Behbahan. J. Food Res. 31, 169–186 (2021).
-
Abramov, V. M. et al. Limosilactobacillus fermentum 3872 that produces class III bacteriocin forms co-aggregates with the antibiotic-resistant Staphylococcus aureus strains and induces their lethal damage. Antibiotics 12, 471 (2023).
-
Monteagudo-Mera, A., Rastall, R. A., Gibson, G. R., Charalampopoulos, D. & Chatzifragkou, A. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl. Microbiol. Biotechnol. 103, 6463–6472 (2019).
-
Singha, S., Thomas, R., Viswakarma, J. N. & Gupta, V. K. Foodborne illnesses of Escherichia coli O157origin and its control measures. J. Food Sci. Technol. 60, 1274–1283 (2023).
-
Giudice, P. D. Skin infections caused by Staphylococcus aureus. Acta Derm. Venereol. 100, 208–215 (2020).
-
Hossain, T. J., Mozumder, H. A., Ali, F. & Akther, K. Inhibition of pathogenic microbes by the lactic acid bacteria Limosilactobacillus fermentum strain LAB-1 and Levilactobacillus brevis strain LAB-5 isolated from the dairy beverage Borhani. Current Research in Nutrition and Food Science Journal 10, 928–939 (2022).
-
Macias-Paz, I. U. et al. Candida albicans the main opportunistic pathogenic fungus in humans. Rev. Argent. Microbiol. 55, 189–198 (2023).
-
Mishra, B. et al. Antifungal metabolites as food bio-preservative: Innovation, outlook, and challenges. Metabolites 12, 12 (2021).
-
Che, J. et al. Elimination of pathogen biofilms via postbiotics from lactic acid bacteria: A promising method in food and biomedicine. Microorganisms 12, 704 (2024).
-
Jomova, K. et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 97, 2499–2574 (2023).
-
Abdul Hakim, B. N., Xuan, N. J. & Oslan, S. N. H. A Comprehensive review of bioactive compounds from lactic acid bacteria: Potential functions as functional food in dietetics and the food industry. Foods 12, 2850 (2023).
-
Hu, Y. et al. Lactic acid bacteria with a strong antioxidant function isolated from Jiangshui, pickles, and feces. Front Microbiol 14, (2023).
-
Sharma, C. et al. Antibiotic sensitivity pattern of indigenous lactobacilli isolated from curd and human milk samples. 3 Biotech 7, 53 (2017).
-
Stefańska, I. et al. Antimicrobial susceptibility of lactic acid bacteria strains of potential use as feed additives – the basic safety and usefulness criterion. Front. Vet. Sci. 8 (2021).
-
Vinayamohan, P. G., Viju, L. S., Joseph, D. & Venkitanarayanan, K. Fermented foods as a potential vehicle of antimicrobial-resistant bacteria and genes. Fermentation 9, 688 (2023).
-
Sharma, P., Garg, N., Sharma, A., Capalash, N. & Singh, R. Nucleases of bacterial pathogens as virulence factors, therapeutic targets and diagnostic markers. Int. J. Med. Microbiol. 309, 151354 (2019).
-
Sato, T., Sulistyani, H., Kamaguchi, A., Miyakawa, H. & Nakazawa, F. Hemolysin of Prevotella oris: Purification and characteristics. J. Oral Biosci. 55, 149–154 (2013).
-
Liao, C., Mao, F., Qian, M. & Wang, X. Pathogen-derived nucleases: An effective weapon for escaping extracellular traps. Front. Immunol. 13 (2022).
-
Skaar, E. P. The battle for iron between bacterial pathogens and their vertebrate hosts. PLOS Pathogens 6, e1000949 (2010).
-
Bittante, G., Penasa, M. & Cecchinato, A. Invited review: Genetics and modeling of milk coagulation properties. J. Dairy Sci. 95, 6843–6870 (2012).
-
Mende, S., Rohm, H. & Jaros, D. Influence of exopolysaccharides on the structure, texture, stability and sensory properties of yoghurt and related products. Int. Dairy J. 52, 57–71 (2016).
-
Natarajan, M., Babu, S. P. S., Balasubramanian, M., Ramachandran, R. & Jesteena, J. Bioactive exopolysaccharide from endophytic Bacillus thuringiensis SMJR inhibits food borne pathogens and enhances the shelf life of foods. Bioact. Carbohydr. Diet. Fibre 27, 100297 (2022).
-
Zapaśnik, A., Sokołowska, B. & Bryła, M. Role of lactic acid bacteria in food preservation and safety. Foods 11, 1283 (2022).
-
Korcz, E. & Varga, L. Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry. Trends Food Sci. Technol. 110, 375–384 (2021).
-
Ranathunga, N. S., Wijayasekara, K. N. & Abeyrathne, E. D. N. S. Application of bio-preservation to enhance food safety: A review. Korean J. Food Preserv. 30, 179–189 (2023).
-
K, M. et al. Antimicrobial property of probiotics. ECJ 22, 33–48 (2021).
