Subcritical water hydrolysis for food applications: Temperature-dependent conversion and bioactivities of meat proteins

subcritical-water-hydrolysis-for-food-applications:-temperature-dependent-conversion-and-bioactivities-of-meat-proteins
Subcritical water hydrolysis for food applications: Temperature-dependent conversion and bioactivities of meat proteins

References

  1. Lee, J. W., Lee, S. Y., Lee, M. Y. & Hong, G. P. Effects of sea lettuce (Ulva prolifera) extracted via subcritical water on the physicochemical properties of pork patties. Food Sci. Anim. Resour. 45, 1431–1443 (2025).

    Google Scholar 

  2. Ramachandraiah, K., Koh, B. B., Davaatseren, M. & Hong, G. P. Characterization of soy protein hydrolysates produced by varying subcritical water processing temperature. Innov. Food Sci. Emerg. Technol. 43, 201–206 (2017).

    Google Scholar 

  3. Sereewatthanawut, I. et al. Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis. Bioresour. Technol. 99, 555–561 (2008).

    Google Scholar 

  4. Ki, W., Renchinkhand, G., Bae, H. & Nam, M. S. Antioxidant, antihypertensive, and anti-inflammatory activities of long-term ripened cheddar cheese water-soluble extract. Food Sci. Anim. Resour. 44, 1373–1388 (2024).

    Google Scholar 

  5. Rivas-Vela, C. I., Amaya-Llano, S. L., Castaño-Tostado, E. & Castillo-Herrera, G. A. Protein hydrolysis by subcritical water: a new perspective on obtaining bioactive peptides. Molecules 26, 6655 (2021).

    Google Scholar 

  6. Solanki, D. et al. Subcritical water hydrolysis of chia seed proteins and their functional characteristics. Food Hydrocolloid 143, 108883 (2023).

    Google Scholar 

  7. Son, C. G., Lee, J. W., Lee, M. Y. & Hong, G. P. Conversion of rice husks into antioxidative and prebiotic biomaterials using subcritical water pretreatment and cellulase incubation under high-pressure. Food Sci. Biotechnol. 34, 1581–1588 (2025).

    Google Scholar 

  8. Di Domenico Ziero, H. et al. An overview of subcritical and supercritical water treatment of different biomasses for protein and amino acids production and recovery. J. Environ. Chem. Eng. 8, 104406 (2020).

    Google Scholar 

  9. Zhang, J. et al. Recent advances in the extraction of bioactive compounds with subcritical water: a review. Trends Food Sci. Technol. 95, 183–195 (2020).

    Google Scholar 

  10. Lee, J. W. et al. Subcritical water mediated hydrolysis of rice husk lignocellulose and upcycling applications of the hydrolysates. Food Bioprocess Technol. 18, 338–348 (2025).

    Google Scholar 

  11. Ko, M. J., Seok, B. Y. & Chung, M. S. Enhanced apigenin yield from parsley via synergistic subcritical-water extraction with pulsed electric field and intense pulsed light pretreatments. Food Sci. Biotechnol. 34, 1183–1191 (2025).

    Google Scholar 

  12. González-Osuna, M. F. et al. Bioactive peptides and protein hydrolysates used in meat and meat products’ preservation-a review. ACS Food Sci. Technol. 4, 1003–1016 (2024).

    Google Scholar 

  13. Ahmed, R. & Chun, B. S. Subcritical water hydrolysis for the production of bioactive peptides from tuna skin collagen. J. Supercrit. Fluids 141, 88–96 (2018).

    Google Scholar 

  14. Xie, Y., Cai, L., Zhou, G. & Li, C. Comparison of nutritional profile between plant-based meat analogues and real meat: A review focusing on ingredients, nutrient contents, bioavailability, and health impacts. Food Res. Int. 187, 114460 (2024).

    Google Scholar 

  15. Tadesse, S. A. et al. Potential of subcritical water hydrolysis to valorize low-valued ray-finned fish (Labeobarbus nedgia): effects of hydrolysis temperature and pressurization agent. Foods 13, 1462 (2024).

    Google Scholar 

  16. Koh, B. B., Lee, E. J., Ramachandraiah, K. & Hong, G. P. Characterization of bovine serum albumin hydrolysates prepared by subcritical water processing. Food Chem. 278, 203–207 (2019).

    Google Scholar 

  17. Powell, T., Bowra, S. & Cooper, H. J. Subcritical water processing of proteins: An alternative to enzymatic digestion? Anal. Chem. 88, 6425–6432 (2016).

    Google Scholar 

  18. Zhu, G. et al. Study on production of amino acids from bean dregs by hydrolysis in sub-critical water. Chin. J. Chem. 28, 2033–2038 (2010).

    Google Scholar 

  19. Abdelmoez, W., Yoshida, H. & Nakahasi, T. Pathways of amino acid transformation and decomposition in saturated subcritical water conditions. Int. J. Chem. React. Eng. 8, A107 (2010).

    Google Scholar 

  20. Kishore, N., Tewari, Y. B. & Goldberg, R. N. A thermodynamic study of the hydrolysis of L-glutamine to (L-glutamate + ammonia) and of L-asparagine to (L-aspartate + ammonia). J. Chem. Thermodyn. 32, 1077–1090 (2000).

    Google Scholar 

  21. Bhat, Z. F. et al. Sous-vide cooking improves the quality and in-vitro digestibility of Semitendinosus from culled dairy cows. Food Res. Int. 127, 108708 (2020).

    Google Scholar 

  22. Ramakrishnan, S. R. et al. A review on the processing of functional proteins or peptides derived from fish by-products and their industrial applications. Heliyon 9, e14188 (2023).

    Google Scholar 

  23. Karami, Z. & Akbari-adergani, B. Bioactive food derived peptides: a review on correlation between structure of bioactive peptides and their functional properties. J. Food Sci. Technol. 56, 535–547 (2019).

    Google Scholar 

  24. He, X., Cao, W., Zhao, Z. & Zhang, C. Analysis of protein composition and antioxidant activity of hydrolysates from Paphia undulate. J. Food Nutr. Res. 1, 30–36 (2013).

    Google Scholar 

  25. Abdelmoez, W., Nakahasi, T. & Yoshida, H. Amino acid transformation and decomposition in saturated subcritical water conditions. Ind. Eng. Chem. Res. 46, 5286–5294 (2007).

    Google Scholar 

  26. Cox, J. S. & Seward, T. M. The reaction kinetics of alanine and glycine under hydrothermal conditions. Geochim. Cosmochim. Acta 71, 2264–2284 (2007).

    Google Scholar 

  27. Alargov, D. K., Deguchi, S., Tsujii, K. & Horikoshi, K. Reaction behaviors of glycine under super- and subcritical water conditions. Orig. Life Evol. Biosph. 32, 1–12 (2002).

    Google Scholar 

  28. Lee, H. J. et al. Effects of horse meat hydrolysate on oxidative stress, proinflammatory cytokines, and the ubiquitin-proteasomal system of C2C12 cells. Food Sci. Anim. Resour. 44, 132–145 (2024).

    Google Scholar 

  29. Gruber, S. & Nickel, A. Toxic or not toxic? The specifications of the standard ISO 10993-5 are not explicit enough to yield comparable results in the cytotoxicity assessment of an identical medical device. Front. Med. Technol. 5, 1195529 (2023).

    Google Scholar 

  30. Jeong, J. W. et al. Analytical methods and effects of bioactive peptides derived from animal products: a mini-review. Food Sci. Anim. Resour. 44, 533–550 (2024).

    Google Scholar 

  31. Xu, P., Chen, L. & Wang, Y. Effect of storage time on antioxidant activity and inhibition on α-Amylase and α-Glucosidase of white tea. Food Sci. Nutr. 7, 636–644 (2019).

    Google Scholar 

  32. Ghassem, M. et al. Purification and identification of ACE inhibitory peptides from Haruan (Channa striatus) myofibrillar protein hydrolysate using HPLC-ESI-TOF MS/MS. Food Chem. 129, 1770–1777 (2011).

    Google Scholar 

  33. Ren, B., Yue, K., Zhang, Y. & Fu, Y. Collagen-derived peptides as prebiotics to improve gut health. Curr. Opin. Food Sci. 55, 101123 (2024).

    Google Scholar 

  34. Beaumont, M. et al. Selective nourishing of gut microbiota with amino acids: A novel prebiotic approach?. Front. Nutr. 9, 1066898 (2022).

    Google Scholar 

  35. Oh, Y. N. & Kim, H. Y. Characterization of plant-based sausage quality using Shiitake mushroom mycelia and soybean and wheat proteins. Food Sci. Anim. Resour. 45, 1514–1531 (2025).

    Google Scholar 

  36. Wang, Z. et al. Taste masking study based on an electronic tongue: the formulation design of 3D printed Levetiracetam instant-dissolving tablets. Pharm. Res. 38, 831–84 (2021).

    Google Scholar 

  37. Han, D. et al. Characterization and comparison of flavor compounds in stewed pork with different processing methods. LWT-Food Sci. Technol. 144, 111229 (2021).

    Google Scholar 

  38. Xu, Y. et al. Comprehensive evaluation of flavor in charcoal and electric-roasted Tamarix lamb by HS-SPME/GC-MS combined with electronic tongue and electronic nose. Foods 10, 2676 (2021).

    Google Scholar 

  39. Fu, Y. et al. Structural characteristics of low bitter and high umami protein hydrolysates prepared from bovine muscle and porcine plasma. Food Chem. 257, 163–171 (2018).

    Google Scholar 

  40. Maehashi, K. & Huang, L. Bitter peptides and bitter taste receptors. Cell. Mol. Life Sci. 66, 1661–1671 (2009).

    Google Scholar 

Download references