Expansion of human hepatocytes and their application in three-dimensional culture and genetic manipulation

expansion-of-human-hepatocytes-and-their-application-in-three-dimensional-culture-and-genetic-manipulation
Expansion of human hepatocytes and their application in three-dimensional culture and genetic manipulation

References

  1. Sun, Z. et al. Hepatocyte transplantation: the progress and the challenges. Hepatol. Commun. https://doi.org/10.1097/HC9.0000000000000266 (2023).

  2. Hu, W. & Lazar, M. A. Modelling metabolic diseases and drug response using stem cells and organoids. Nat. Rev. Endocrinol. 18, 744–759 (2022).

    PubMed  PubMed Central  Google Scholar 

  3. Grossman, M. et al. Successful ex vivo gene therapy directed to liver in a patient with familial hypercholesterolaemia. Nat. Genet. 6, 335–341 (1994).

    CAS  PubMed  Google Scholar 

  4. Hickey, R. D. et al. Curative ex vivo liver-directed gene therapy in a pig model of hereditary tyrosinemia type 1. Sci. Transl. Med. 8, 349ra399 (2016).

    Google Scholar 

  5. VanLith, C. J. et al. Ex vivo hepatocyte reprograming promotes homology-directed DNA repair to correct metabolic disease in mice after transplantation. Hepatol. Commun. 3, 558–573 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Artegiani, B. et al. Fast and efficient generation of knock-in human organoids using homology-independent CRISPR–Cas9 precision genome editing. Nat., Cell. Biol. 22, 321–331 (2020).

    CAS  PubMed  Google Scholar 

  7. Kim, T. W. et al. Biphasic activation of WNT signaling facilitates the derivation of midbrain dopamine neurons from hESCs for translational use. Cell Stem Cell 28, 343–355 e345 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Touboul, T. et al. Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology 51, 1754–1765 (2010).

    CAS  PubMed  Google Scholar 

  9. Baxter, M. et al. Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes. J. Hepatol. 62, 581–589 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang, P. et al. Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell 14, 370–384 (2014).

    CAS  PubMed  Google Scholar 

  11. Grandy, R., Tomaz, R. A. & Vallier, L. Modeling disease with human inducible pluripotent stem cells. Annu. Rev. Pathol. 14, 449–468 (2019).

    CAS  PubMed  Google Scholar 

  12. Xiang, C. et al. Long-term functional maintenance of primary human hepatocytes in vitro. Science 364, 399–402 (2019).

    CAS  PubMed  Google Scholar 

  13. Fu, G. B. et al. Expansion and differentiation of human hepatocyte-derived liver progenitor-like cells and their use for the study of hepatotropic pathogens. Cell Res. 29, 8–22 (2019).

    CAS  PubMed  Google Scholar 

  14. Hu, H. et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell 175, 1591–1606 e1519 (2018).

    CAS  PubMed  Google Scholar 

  15. Zhang, K. et al. In vitro expansion of primary human hepatocytes with efficient liver repopulation capacity. Cell Stem Cell 23, 806–819 e804 (2018).

    CAS  PubMed  Google Scholar 

  16. Katsuda, T. et al. Generation of human hepatic progenitor cells with regenerative and metabolic capacities from primary hepatocytes. eLife https://doi.org/10.7554/eLife.47313 (2019).

  17. Kim, Y. et al. Small molecule-mediated reprogramming of human hepatocytes into bipotent progenitor cells. J. Hepatol. 70, 97–107 (2019).

    CAS  PubMed  Google Scholar 

  18. Wang, C. et al. Dedifferentiation-associated inflammatory factors of long-term expanded human hepatocytes exacerbate their elimination by macrophages during liver engraftment. Hepatology 76, 1690–1705 (2022).

    CAS  PubMed  Google Scholar 

  19. Zhang, K. et al. Ex vivo factor VIII-modified proliferating human hepatocytes therapy for haemophilia A. Cell Prolif. 56, e13467 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yuan, X. et al. Preclinical efficacy and safety of encapsulated proliferating human hepatocyte organoids in treating liver failure. Cell Stem Cell 31, 484–498 e485 (2024).

    CAS  PubMed  Google Scholar 

  21. Zhang, K. et al. Efficient expansion and CRISPR–Cas9-mediated gene correction of patient-derived hepatocytes for treatment of inherited liver diseases. Cell Stem Cell https://doi.org/10.1016/j.stem.2024.04.022 (2024).

    PubMed  PubMed Central  Google Scholar 

  22. Nicolas, C. T. et al. Ex vivo cell therapy by ectopic hepatocyte transplantation treats the porcine tyrosinemia model of acute liver failure. Mol. Ther. Methods Clin. Dev. 18, 738–750 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Huch, M. et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494, 247–250 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Huch, M. et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160, 299–312 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yanger, K. et al. Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev. 27, 719–724 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tarlow, B. D. et al. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell 15, 605–618 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tanimizu, N., Nishikawa, Y., Ichinohe, N., Akiyama, H. & Mitaka, T. Sry HMG box protein 9-positive (Sox9+) epithelial cell adhesion molecule-negative (EpCAM) biphenotypic cells derived from hepatocytes are involved in mouse liver regeneration. J. Biol. Chem. 289, 7589–7598 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yuan, X., Sun, Z., Wu, J., Hui, L. & Zhang, L. Cell therapy for liver diseases: from hepatocyte transplantation to bioartificial livers. Curr. Opin. Biomed. Eng. 30, 100530 (2024).

    CAS  Google Scholar 

  29. Labanieh, L. et al. Enhanced safety and efficacy of protease-regulated CAR-T cell receptors. Cell 185, 1745–1763 e1722 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Peng, W. C. et al. Inflammatory cytokine TNFα promotes the long-term expansion of primary hepatocytes in 3D culture. Cell 175, 1607–1619 e1615 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Guo, R. et al. IL6 supports long-term expansion of hepatocytes in vitro. Nat. Commun. 13, 7345 (2022).

    PubMed  PubMed Central  Google Scholar 

  32. Cox, D. B., Platt, R. J. & Zhang, F. Therapeutic genome editing: prospects and challenges. Nat. Med. 21, 121–131 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dunbar, C. E. et al. Gene therapy comes of age. Science https://doi.org/10.1126/science.aan4672 (2018).

  34. Ma, C. et al. CD47 and PD-L1 overexpression in proliferating human hepatocytes attenuated immune responses and ameliorated acute liver injury in mice. Am. J. Transplant. 23, 1832–1844 (2023).

    CAS  PubMed  Google Scholar 

  35. Gao, Y. et al. Distinct gene expression and epigenetic signatures in hepatocyte-like cells produced by different strategies from the same donor. Stem Cell Rep. 9, 1813–1824 (2017).

    CAS  Google Scholar 

  36. Akbari, S. et al. Robust, long-term culture of endoderm-derived hepatic organoids for disease modeling. Stem Cell Rep., 13, 627–641 (2019).

    CAS  Google Scholar 

  37. Feng, S. et al. Large-scale generation of functional and transplantable hepatocytes and cholangiocytes from human endoderm stem cells. Cell Rep. 33, 108455 (2020).

    CAS  PubMed  Google Scholar 

  38. Ma, C. et al. Single cell Raman spectroscopy to identify different stages of proliferating human hepatocytes for cell therapy. Stem Cell Res. Ther. 12, 555 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Qiao, S. et al. Functional proliferating human hepatocytes: in vitro hepatocyte model for drug metabolism, excretion, and toxicity. Drug Metab. Dispos. 49, 305–313 (2021).

    CAS  PubMed  Google Scholar 

  40. Fennema, E., Rivron, N., Rouwkema, J., van Blitterswijk, C. & de Boer, J. Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol. 31, 108–115 (2013).

    CAS  PubMed  Google Scholar 

  41. Marsee, A. et al. Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids. Cell Stem Cell 28, 816–832 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yamaguchi, T. et al. Generation of functional human hepatocytes in vitro: current status and future prospects. Inflamm. Regen. 39, 13 (2019).

    PubMed  PubMed Central  Google Scholar 

  43. Meng, X., Liu, A., Phangthavong, O. & Sun, Y. A novel strategy for treating acute liver failure: encapsulated proliferating human hepatocyte organoids. Biomater. Transl. 5, 444–446 (2024).

    PubMed  PubMed Central  Google Scholar 

  44. Yu, L. et al. Manganese is a potent inducer of lysosomal activity that inhibits de novo HBV infection. PLoS Pathog. 21, e1012800 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee, S. M., Schelcher, C., Demmel, M., Hauner, M. & Thasler, W. E. Isolation of human hepatocytes by a two-step collagenase perfusion procedure. J. Vis. Exp. https://doi.org/10.3791/50615 (2013).

    PubMed  PubMed Central  Google Scholar 

  46. Knobeloch, D. et al. Human hepatocytes: isolation, culture, and quality procedures. Methods Mol. Biol. 806, 99–120 (2012).

    CAS  PubMed  Google Scholar 

  47. Broutier, L. et al. Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nat. Protoc. 11, 1724–1743 (2016).

    CAS  PubMed  Google Scholar 

  48. Sun, L. et al. Modelling liver cancer initiation with organoids derived from directly reprogrammed human hepatocytes. Nat. Cell. Biol. 21, 1015–1026 (2019).

    CAS  PubMed  Google Scholar 

  49. Ogawa, S. et al. Three-dimensional culture and cAMP signaling promote the maturation of human pluripotent stem cell-derived hepatocytes. Development 140, 3285–3296 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Azuma, H. et al. Robust expansion of human hepatocytes in Fah−/−/Rag2−/−/Il2rg−/− mice. Nat. Biotechnol. 25, 903–910 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references