A biocompatible propolis pollen and ZnO nanorod composite with antimicrobial and antibiofilm activity

a-biocompatible-propolis-pollen-and-zno-nanorod-composite-with-antimicrobial-and-antibiofilm-activity
A biocompatible propolis pollen and ZnO nanorod composite with antimicrobial and antibiofilm activity

References

  1. Laxminarayan, R. et al. Antibiotic resistance—the need for global solutions. Lancet. Infect. Dis. 13, 1057–1098 (2013).

    Google Scholar 

  2. Roemer, T. & Krysan, D. J. Antifungal drug development: Challenges, unmet clinical Needs, and new approaches. Cold Spring Harbor Perspect. Med. 4, a019703–a019703 (2014).

    Google Scholar 

  3. Perfect, J. R. Is there an emerging need for new antifungals? Expert Opin. Emerg. Drugs. 21, 129–131 (2016).

    Google Scholar 

  4. Miceli, M. H., Díaz, J. A. & Lee, S. A. Emerging opportunistic yeast infections. Lancet. Infect. Dis. 11, 142–151 (2011).

    Google Scholar 

  5. Boneca, I. G. The future of microbial drug resistance. Microb. Drug Resist. 27, 1–2 (2021).

    Google Scholar 

  6. Griffith, M., Postelnick, M. & Scheetz, M. Antimicrobial stewardship programs: methods of operation and suggested outcomes. Expert Rev. Anti-infective Therapy. 10, 63–73 (2012).

    Google Scholar 

  7. Tacconelli, E. Antimicrobial use: risk driver of multidrug resistant microorganisms in healthcare settings. Curr. Opin. Infect. Dis. 22, 352–358 (2009).

    Google Scholar 

  8. Serwecińska, L. Antimicrobials and Antibiotic-Resistant Bacteria: A risk to the environment and to public health. Water 12, 3313 (2020).

  9. Gnanamani, A., Hariharan, P. & Paul-Satyaseela, M. Staphylococcus aureus: Overview of bacteriology, clinical diseases, epidemiology, antibiotic resistance and therapeutic approach. in Frontiers in Staphylococcus aureus (eds Enany, S. & Crotty Alexander, L. E.) (InTech, 2017). https://doi.org/10.5772/67338

  10. Chmielewski, M. et al. The oral Cavity—Another reservoir of Antimicrobial-Resistant Staphylococcus aureus? Antibiotics 13, 649 (2024).

    Google Scholar 

  11. Silva Macêdo, N. et al. Chemical characterization, antibacterial and antifungal activity of honey pots and pollen pots obtained from the stingless bee Tetragonisca angustula (Latreille, 1811). Food Chem. Toxicol. 197, 115305 (2025).

    Google Scholar 

  12. Zaatout, N. Presence of non-oral bacteria in the oral cavity. Arch. Microbiol. 203, 2747–2760 (2021).

    Google Scholar 

  13. Pianalto, K. & Alspaugh, J. New horizons in antifungal therapy. JoF 2, 26 (2016).

    Google Scholar 

  14. Brown, G. D. et al. Hidden killers: human fungal infections. Sci Transl Med 4 (2012).

  15. Patel, M. Oral cavity and Candida albicans: colonisation to the development of infection. Pathogens 11, 335 (2022).

    Google Scholar 

  16. Damulienė, V., Kaškonienė, V., Kaškonas, P., Mickienė, R. & Maruška, A. Improved antibacterial properties of fermented and enzymatically hydrolyzed bee pollen and its combined effect with antibiotics. Pharmaceuticals 18, 15 (2024).

    Google Scholar 

  17. Bhargava, P. et al. Experimental evidence for therapeutic potentials of propolis. Nutrients 13, 2528 (2021).

    Google Scholar 

  18. Okyay, T. O. et al. Antibacterial properties and mechanisms of toxicity of sonochemically grown ZnO nanorods. RSC Adv. 5, 2568–2575 (2015).

    Google Scholar 

  19. Gopikrishnan, R. et al. Synthesis, characterization and biocompatibility studies of zinc oxide (ZnO) nanorods for biomedical application. Nano-Micro Lett. 2, 31–36 (2010).

    Google Scholar 

  20. Reda, A. T., Park, J. Y. & Park, Y. T. Zinc Oxide-Based nanomaterials for microbiostatic activities: A review. JFB 15, 103 (2024).

    Google Scholar 

  21. Svečnjak, L., Marijanović, Z., Okińczyc, P., Marek Kuś, P. & Jerković, I. Mediterranean propolis from the Adriatic sea Islands as a source of natural antioxidants: comprehensive chemical biodiversity determined by GC-MS, FTIR-ATR, UHPLC-DAD-QqTOF-MS, DPPH and FRAP assay. Antioxidants 9, 337 (2020).

    Google Scholar 

  22. Alvarez, P. L. et al. Spectroscopic discrimination and characterization of bee propolis from the Philippines. Philipp J. Sci 150 (2021).

  23. Quero, R. E., Lucas, K., Higgins, J. & Mojica, E. R. E. ATR-FTIR characterization and multivariate analysis classification of different commercial propolis extracts. Measurement: Food. 18, 100224 (2025).

    Google Scholar 

  24. Oliveira, R. N. et al. FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Matéria (Rio J). 21, 767–779 (2016).

    Google Scholar 

  25. Kasprzyk, I., Depciuch, J., Grabek-Lejko, D. & Parlinska-Wojtan, M. FTIR-ATR spectroscopy of pollen and honey as a tool for unifloral honey authentication. The case study of rape honey. Food Control. 84, 33–40 (2018).

    Google Scholar 

  26. Prđun, S., Svečnjak, L., Valentić, M., Marijanović, Z. & Jerković, I. Characterization of bee pollen: Physico-Chemical Properties, headspace composition and FTIR spectral profiles. Foods 10, 2103 (2021).

    Google Scholar 

  27. Castiglioni, S. et al. Morphological, physicochemical and FTIR spectroscopic properties of bee pollen loads from different botanical origin. Molecules 24, 3974 (2019).

    Google Scholar 

  28. Dell’Anna, R. et al. Pollen discrimination and classification by fourier transform infrared (FT-IR) microspectroscopy and machine learning. Anal. Bioanal Chem. 394, 1443–1452 (2009).

    Google Scholar 

  29. Marcucci, M. C. et al. Analysis of Brazilian propolis by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Characteristics of crude Resin, ethanolic Extracts, wax and isolated compounds. Bee World. 99, 82–88 (2022).

    Google Scholar 

  30. Ferreira, L. M. D. M. C. et al. Preliminary study on the chemical and biological properties of propolis extract from stingless bees from the northern region of Brazil. Processes 12, 700 (2024).

  31. Uddin, M. J., Liyanage, S., Abidi, N. & Gill, H. S. Physical and biochemical characterization of chemically treated pollen shells for potential use in oral delivery of therapeutics. J. Pharm. Sci. 107, 3047–3059 (2018).

    Google Scholar 

  32. Ertosun, S. et al. Structural characterization of microcapsules from common bee pollen for the development of delivery systems. J. Polym. Environ. 33, 1171–1184 (2025).

    Google Scholar 

  33. Aylanc, V. et al. Development of natural Sporopollenin microcapsules: from bee pollen to versatile biomaterials. Emergent mater. https://doi.org/10.1007/s42247-025-01002-1 (2025).

    Google Scholar 

  34. Tampucci, S. et al. Sporopollenin microcapsule: sunscreen delivery system with photoprotective properties. Pharmaceutics 14, 2041 (2022).

    Google Scholar 

  35. Chandraiahgari, C. R. et al. Synthesis and characterization of ZnO nanorods with a narrow size distribution. RSC Adv. 5, 49861–49870 (2015).

    Google Scholar 

  36. Ratajczak, M. et al. Promising antimicrobial properties of bioactive compounds from different honeybee products. Molecules 26, 4007 (2021).

    Google Scholar 

  37. Calderón-Martínez, P. et al. Antioxidant and antibacterial properties of ethanolic Pot‐Pollen extracts of Melipona beecheii and determination of the major components by GC‐MS. Chem. Biodivers. 21, e202401355 (2024).

    Google Scholar 

  38. Przybyłek, I. & Karpiński, T. M. Antibacterial properties of propolis. Molecules 24, 2047 (2019).

    Google Scholar 

  39. Rondić, M. et al. Antimicrobial effectiveness of chestnut honey, pollen and propolis individually and in combination. Vet. stn. (Online). 56, 203–214 (2024).

    Google Scholar 

  40. Alghutaimel, H. et al. Propolis use in dentistry: A narrative review of its preventive and therapeutic applications. Int. Dent. J. 74, 365–386 (2024).

    Google Scholar 

  41. De Paula, G. T., Menezes, C., Pupo, M. T. & Rosa, C. A. Stingless bees and microbial interactions. Curr. Opin. Insect Sci. 44, 41–47 (2021).

    Google Scholar 

  42. Lipovsky, A., Nitzan, Y., Gedanken, A. & Lubart, R. Antifungal activity of ZnO nanoparticles—the role of ROS mediated cell injury. Nanotechnology 22, 105101 (2011).

    Google Scholar 

  43. Grenho, L. et al. In vitro antimicrobial activity and biocompatibility of propolis containing nanohydroxyapatite. Biomed. Mater. 10, 025004 (2015).

    Google Scholar 

  44. Mori, G. G., Rodrigues, S. D. S., Shibayama, S. T., Pomini, M. & Amaral, C. O. F. D. Biocompatibility of a calcium Hydroxide-Propolis experimental paste in rat subcutaneous tissue. Braz Dent. J. 25, 104–108 (2014).

    Google Scholar 

  45. Acquaviva, A. et al. Phytochemical and biological investigations on the pollen from industrial hemp male inflorescences. Food Res. Int. 161, 111883 (2022).

    Google Scholar 

  46. Zanni, E. et al. In vitro toxicity studies of zinc oxide nano- and microrods on mammalian cells: A comparative analysis. Mater. Lett. 179, 90–94 (2016).

    Google Scholar 

  47. Espitia, P. J. P., Otoni, C. G. & Soares, N. F. F. Zinc oxide nanoparticles for food packaging applications. in Antimicrobial Food Packaging 425–431 (Elsevier, 2016). https://doi.org/10.1016/B978-0-12-800723-5.00034-6

  48. Bossù, M. et al. Biocompatibility and antibiofilm properties of calcium Silicate-Based cements: an in vitro evaluation and report of two clinical cases. Biology 10, 470 (2021).

    Google Scholar 

Download references