References
-
Laxminarayan, R. et al. Antibiotic resistance—the need for global solutions. Lancet. Infect. Dis. 13, 1057–1098 (2013).
-
Roemer, T. & Krysan, D. J. Antifungal drug development: Challenges, unmet clinical Needs, and new approaches. Cold Spring Harbor Perspect. Med. 4, a019703–a019703 (2014).
-
Perfect, J. R. Is there an emerging need for new antifungals? Expert Opin. Emerg. Drugs. 21, 129–131 (2016).
-
Miceli, M. H., Díaz, J. A. & Lee, S. A. Emerging opportunistic yeast infections. Lancet. Infect. Dis. 11, 142–151 (2011).
-
Boneca, I. G. The future of microbial drug resistance. Microb. Drug Resist. 27, 1–2 (2021).
-
Griffith, M., Postelnick, M. & Scheetz, M. Antimicrobial stewardship programs: methods of operation and suggested outcomes. Expert Rev. Anti-infective Therapy. 10, 63–73 (2012).
-
Tacconelli, E. Antimicrobial use: risk driver of multidrug resistant microorganisms in healthcare settings. Curr. Opin. Infect. Dis. 22, 352–358 (2009).
-
Serwecińska, L. Antimicrobials and Antibiotic-Resistant Bacteria: A risk to the environment and to public health. Water 12, 3313 (2020).
-
Gnanamani, A., Hariharan, P. & Paul-Satyaseela, M. Staphylococcus aureus: Overview of bacteriology, clinical diseases, epidemiology, antibiotic resistance and therapeutic approach. in Frontiers in Staphylococcus aureus (eds Enany, S. & Crotty Alexander, L. E.) (InTech, 2017). https://doi.org/10.5772/67338
-
Chmielewski, M. et al. The oral Cavity—Another reservoir of Antimicrobial-Resistant Staphylococcus aureus? Antibiotics 13, 649 (2024).
-
Silva Macêdo, N. et al. Chemical characterization, antibacterial and antifungal activity of honey pots and pollen pots obtained from the stingless bee Tetragonisca angustula (Latreille, 1811). Food Chem. Toxicol. 197, 115305 (2025).
-
Zaatout, N. Presence of non-oral bacteria in the oral cavity. Arch. Microbiol. 203, 2747–2760 (2021).
-
Pianalto, K. & Alspaugh, J. New horizons in antifungal therapy. JoF 2, 26 (2016).
-
Brown, G. D. et al. Hidden killers: human fungal infections. Sci Transl Med 4 (2012).
-
Patel, M. Oral cavity and Candida albicans: colonisation to the development of infection. Pathogens 11, 335 (2022).
-
Damulienė, V., Kaškonienė, V., Kaškonas, P., Mickienė, R. & Maruška, A. Improved antibacterial properties of fermented and enzymatically hydrolyzed bee pollen and its combined effect with antibiotics. Pharmaceuticals 18, 15 (2024).
-
Bhargava, P. et al. Experimental evidence for therapeutic potentials of propolis. Nutrients 13, 2528 (2021).
-
Okyay, T. O. et al. Antibacterial properties and mechanisms of toxicity of sonochemically grown ZnO nanorods. RSC Adv. 5, 2568–2575 (2015).
-
Gopikrishnan, R. et al. Synthesis, characterization and biocompatibility studies of zinc oxide (ZnO) nanorods for biomedical application. Nano-Micro Lett. 2, 31–36 (2010).
-
Reda, A. T., Park, J. Y. & Park, Y. T. Zinc Oxide-Based nanomaterials for microbiostatic activities: A review. JFB 15, 103 (2024).
-
Svečnjak, L., Marijanović, Z., Okińczyc, P., Marek Kuś, P. & Jerković, I. Mediterranean propolis from the Adriatic sea Islands as a source of natural antioxidants: comprehensive chemical biodiversity determined by GC-MS, FTIR-ATR, UHPLC-DAD-QqTOF-MS, DPPH and FRAP assay. Antioxidants 9, 337 (2020).
-
Alvarez, P. L. et al. Spectroscopic discrimination and characterization of bee propolis from the Philippines. Philipp J. Sci 150 (2021).
-
Quero, R. E., Lucas, K., Higgins, J. & Mojica, E. R. E. ATR-FTIR characterization and multivariate analysis classification of different commercial propolis extracts. Measurement: Food. 18, 100224 (2025).
-
Oliveira, R. N. et al. FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Matéria (Rio J). 21, 767–779 (2016).
-
Kasprzyk, I., Depciuch, J., Grabek-Lejko, D. & Parlinska-Wojtan, M. FTIR-ATR spectroscopy of pollen and honey as a tool for unifloral honey authentication. The case study of rape honey. Food Control. 84, 33–40 (2018).
-
Prđun, S., Svečnjak, L., Valentić, M., Marijanović, Z. & Jerković, I. Characterization of bee pollen: Physico-Chemical Properties, headspace composition and FTIR spectral profiles. Foods 10, 2103 (2021).
-
Castiglioni, S. et al. Morphological, physicochemical and FTIR spectroscopic properties of bee pollen loads from different botanical origin. Molecules 24, 3974 (2019).
-
Dell’Anna, R. et al. Pollen discrimination and classification by fourier transform infrared (FT-IR) microspectroscopy and machine learning. Anal. Bioanal Chem. 394, 1443–1452 (2009).
-
Marcucci, M. C. et al. Analysis of Brazilian propolis by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Characteristics of crude Resin, ethanolic Extracts, wax and isolated compounds. Bee World. 99, 82–88 (2022).
-
Ferreira, L. M. D. M. C. et al. Preliminary study on the chemical and biological properties of propolis extract from stingless bees from the northern region of Brazil. Processes 12, 700 (2024).
-
Uddin, M. J., Liyanage, S., Abidi, N. & Gill, H. S. Physical and biochemical characterization of chemically treated pollen shells for potential use in oral delivery of therapeutics. J. Pharm. Sci. 107, 3047–3059 (2018).
-
Ertosun, S. et al. Structural characterization of microcapsules from common bee pollen for the development of delivery systems. J. Polym. Environ. 33, 1171–1184 (2025).
-
Aylanc, V. et al. Development of natural Sporopollenin microcapsules: from bee pollen to versatile biomaterials. Emergent mater. https://doi.org/10.1007/s42247-025-01002-1 (2025).
-
Tampucci, S. et al. Sporopollenin microcapsule: sunscreen delivery system with photoprotective properties. Pharmaceutics 14, 2041 (2022).
-
Chandraiahgari, C. R. et al. Synthesis and characterization of ZnO nanorods with a narrow size distribution. RSC Adv. 5, 49861–49870 (2015).
-
Ratajczak, M. et al. Promising antimicrobial properties of bioactive compounds from different honeybee products. Molecules 26, 4007 (2021).
-
Calderón-Martínez, P. et al. Antioxidant and antibacterial properties of ethanolic Pot‐Pollen extracts of Melipona beecheii and determination of the major components by GC‐MS. Chem. Biodivers. 21, e202401355 (2024).
-
Przybyłek, I. & Karpiński, T. M. Antibacterial properties of propolis. Molecules 24, 2047 (2019).
-
Rondić, M. et al. Antimicrobial effectiveness of chestnut honey, pollen and propolis individually and in combination. Vet. stn. (Online). 56, 203–214 (2024).
-
Alghutaimel, H. et al. Propolis use in dentistry: A narrative review of its preventive and therapeutic applications. Int. Dent. J. 74, 365–386 (2024).
-
De Paula, G. T., Menezes, C., Pupo, M. T. & Rosa, C. A. Stingless bees and microbial interactions. Curr. Opin. Insect Sci. 44, 41–47 (2021).
-
Lipovsky, A., Nitzan, Y., Gedanken, A. & Lubart, R. Antifungal activity of ZnO nanoparticles—the role of ROS mediated cell injury. Nanotechnology 22, 105101 (2011).
-
Grenho, L. et al. In vitro antimicrobial activity and biocompatibility of propolis containing nanohydroxyapatite. Biomed. Mater. 10, 025004 (2015).
-
Mori, G. G., Rodrigues, S. D. S., Shibayama, S. T., Pomini, M. & Amaral, C. O. F. D. Biocompatibility of a calcium Hydroxide-Propolis experimental paste in rat subcutaneous tissue. Braz Dent. J. 25, 104–108 (2014).
-
Acquaviva, A. et al. Phytochemical and biological investigations on the pollen from industrial hemp male inflorescences. Food Res. Int. 161, 111883 (2022).
-
Zanni, E. et al. In vitro toxicity studies of zinc oxide nano- and microrods on mammalian cells: A comparative analysis. Mater. Lett. 179, 90–94 (2016).
-
Espitia, P. J. P., Otoni, C. G. & Soares, N. F. F. Zinc oxide nanoparticles for food packaging applications. in Antimicrobial Food Packaging 425–431 (Elsevier, 2016). https://doi.org/10.1016/B978-0-12-800723-5.00034-6
-
Bossù, M. et al. Biocompatibility and antibiofilm properties of calcium Silicate-Based cements: an in vitro evaluation and report of two clinical cases. Biology 10, 470 (2021).
