References
-
Guo, X. et al. Mitochondrial stress is relayed to the cytosol by an OMA1-DELE1-HRI pathway. Nature 579 (7799), 427–432. https://doi.org/10.1038/s41586-020-2078-2 (2020).
-
Malay, A. D. et al. An ultra-stable gold-coordinated protein cage displaying reversible assembly. Nature 569 (7756), 438–442. https://doi.org/10.1038/s41586-019-1185-4 (2019).
-
Murdoch, C. C. & Skaar, E. P. Nutritional immunity: the battle for nutrient metals at the host-pathogen interface. Nat. Rev. Microbiol. 20 (11), 657–670. https://doi.org/10.1038/s41579-022-00745-6 (2022).
-
Lucas, C. et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 584 (7821), 463–469. https://doi.org/10.1038/s41586-020-2588-y (2020).
-
Zhao, C. et al. Characterising the asynchronous resurgence of common respiratory viruses following the COVID-19 pandemic. Nat. Commun. 16 (1), 1610. https://doi.org/10.1038/s41467-025-56776-z (2025).
-
Zhao, X., Zhu, X., Wang, J., Ye, C. & Zhao, S. The epidemiological analysis of respiratory virus infections in children in Hangzhou from 2019 to 2023. Virus Res. 355, 199558. https://doi.org/10.1016/j.virusres.2025.199558 (2025).
-
Li, J. et al. Disease burden and epidemiological characteristics of common respiratory pathogens in children with respiratory tract infections in Guangzhou, 2017–2022. Chin. J. Infect. Control. 22 (1), 44–51. https://doi.org/10.12138/i.issn.1671-9638.20232814 (2023).
-
Tombuloglu, H. et al. Multiplex real-time RT-PCR method for the diagnosis of SARS-CoV-2 by targeting viral N, RdRP and human RP genes. Sci. Rep. 12 (1), 2853. https://doi.org/10.1038/s41598-022-06977-z (2022).
-
Rong, G. et al. COVID-19 diagnostic methods and detection techniques. Encyclopedia Sens. Biosens. 17–32. https://doi.org/10.1016/B978-0-12-822548-6.00080-7 (2023).
-
Pike, A. M., Friend, C. M. & Bell, S. P. Distinct RPA functions promote eukaryotic DNA replication initiation and elongation. Nucleic Acids Res. 51 (19), 10506–10518. https://doi.org/10.1093/nar/gkad765 (2023).
-
Xu, T. et al. Deep learning-enhanced hand-driven microfluidic chip for multiplexed nucleic acid detection based on RPA/CRISPR. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 12 (21), e2414918 https://doi.org/10.1002/advs.202414918 (2025).
-
Zheng, F. et al. A highly sensitive CRISPR-Empowered surface plasmon resonance sensor for diagnosis of inherited diseases with Femtomolar-Level Real-Time Quantification. Advanced science (Weinheim. Baden-Wurttemberg Germany). 9 (14), e2105231. https://doi.org/10.1002/advs.202105231 (2022).
-
Chen, Y. et al. Ultrasensitive and specific clustered regularly interspaced short palindromic repeats empowered a plasmonic fiber tip system for Amplification-Free Monkeypox virus detection and genotyping. ACS Nano. 17 (13), 12903–12914. https://doi.org/10.1021/acsnano.3c05007 (2023).
-
Wang, L. et al. Rapid and ultrasensitive detection of Mpox virus using CRISPR/Cas12b-empowered graphene field-effect transistors. Appl. Phys. Reviews. 10 (3). https://doi.org/10.1063/5.0142494 (2023).
-
Wu, C. et al. CRISPR-Cas12a-Empowered electrochemical biosensor for rapid and ultrasensitive detection of SARS-CoV-2 delta variant. Nano-micro Lett. 14 (1), 159. https://doi.org/10.1007/s40820-022-00888-4 (2022).
-
Makarova, K. S. et al. Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol. 9 (6), 467–477. https://doi.org/10.1038/nrmicro2577 (2011).
-
Boonbanjong, P., Treerattrakoon, K., Waiwinya, W., Pitikultham, P. & Japrung, D. Isothermal amplification technology for disease diagnosis. Biosensors 12 (9), 677. https://doi.org/10.3390/bios12090677 (2022).
-
Sashital, D. G. Pathogen detection in the CRISPR-Cas era. Genome Med. 10 (1), 32. https://doi.org/10.1186/s13073-018-0543-4 (2018).
-
Kang, Y. et al. CRISPR-Cas12a-Based aptasensor for On-Site and highly sensitive detection of Microcystin-LR in freshwater. Environ. Sci. Technol. Environ. Sci. Technol. 56 (7), 4101–4110. https://doi.org/10.1021/acs.est.1c06733 (2022).
-
Li, S. Y. et al. CRISPR-Cas12a-assisted nucleic acid detection. Cell. Discovery. 4, 20. https://doi.org/10.1038/s41421-018-0028-z (2018).
-
Dronina, J., Samukaite-Bubniene, U. & Ramanavicius, A. Towards application of CRISPR-Cas12a in the design of modern viral DNA detection tools (Review). J. Nanobiotechnol. 20 (1), 41. https://doi.org/10.1186/s12951-022-01246-7 (2022).
-
Wang, B. et al. Cas12aVDet: A CRISPR/Cas12a-Based platform for rapid and visual nucleic acid detection. Anal. Chem. 91 (19), 12156–12161. https://doi.org/10.1021/acs.analchem.9b01526 (2019).
-
Fozouni, P. et al. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell 184 (2), 323–333e9. https://doi.org/10.1016/j.cell.2020.12.001 (2021).
-
de Dieu Habimana, J. et al. A rationally designed CRISPR/Cas12a assay using a multimodal reporter for various readouts. Anal. Chem. 95 (31), 11741–11750. https://doi.org/10.1021/acs.analchem.3c01876 (2023).
-
Jia, Z., Zhang, Y., Zhang, C., Wei, X. & Zhang, M. Biosensing intestinal alkaline phosphatase by pregnancy test strips based on Target-Triggered CRISPR-Cas12a activity to monitor intestinal inflammation. Anal. Chem. 95 (37), 14111–14118. https://doi.org/10.1021/acs.analchem.3c03099 (2023).
-
Li, Q. N. et al. Low-Background CRISPR/Cas12a sensors for versatile Live-Cell biosensing. Anal. Chem. 95 (42), 15725–15735. https://doi.org/10.1021/acs.analchem.3c03131 (2023).
-
Liu, L. et al. Generation and application of a novel high-throughput detection based on RPA-CRISPR technique to sensitively monitor pathogenic microorganisms in the environment. Sci. Total Environ. 838 (Pt 2), 156048. https://doi.org/10.1016/j.scitotenv.2022.156048 (2022).
-
Tian, B. et al. Tandem CRISPR nucleases-based lateral flow assay for amplification-free MiRNA detection via the designed locked RNA/DNA as fuels. Talanta 266 (Pt 1), 124995. https://doi.org/10.1016/j.talanta.2023.124995 (2024).
-
Yuan, J. et al. CRISPR-Cas12a-Mediated Hue-Recognition lateral flow assay for Point-of-Need detection of Salmonella. Anal. Chem. 96 (1), 220–228. https://doi.org/10.1021/acs.analchem.3c03753 (2024).
-
Zhang, H. et al. CRISPR-Cas12a based HSV DNA detection method using quantum dot-labeled immunochromatographic strips. Microchem. J. 207, 112117. https://doi.org/10.1016/j.microc.2024.112117 (2024).
-
Allen, A., Cooper, B. H., Singh, J., Rohs, R. & Qin, P. Z. PAM-adjacent DNA flexibility tunes CRISPR-Cas12a off-target binding. Sci. Rep. 15 (1), 4930. https://doi.org/10.1038/s41598-025-87565-9 (2025).
-
Teo, S. M. et al. The infant nasopharyngeal Microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell. Host Microbe. 17 (5), 704–715. https://doi.org/10.1016/j.chom.2015.03.008 (2015).
-
Zhou, H., Tsou, J. H., Chinthalapally, M., Liu, H. & Jiang, F. Detection and differentiation of SARS-CoV-2, Influenza, and respiratory syncytial viruses by CRISPR. Diagnostics (Basel Switzerland). 11 (5), 823. https://doi.org/10.3390/diagnostics11050823 (2021).
-
Ni, M., Xu, H., Luo, J., Liu, W. & Zhou, D. Simultaneous detection and differentiation of SARS-CoV-2, influenza A virus and influenza B virus by one-step quadruplex real-time RT-PCR in patients with clinical manifestations. Int. J. Infect. Diseases: IJID : Official Publication Int. Soc. Infect. Dis. 103, 517–524. https://doi.org/10.1016/j.ijid.2020.12.027 (2021).
-
Ho, Y. I. I., Wong, A. H. & Lai, R. W. M. Comparison of the cepheid Xpert xpress Flu/RSV assay to in-house Flu/RSV triplex real-time RT-PCR for rapid molecular detection of influenza A, influenza B and respiratory syncytial virus in respiratory specimens. J. Med. Microbiol. 67 (11), 1576–1580. https://doi.org/10.1099/jmm.0.000841 (2018).
-
Dou, Y. et al. Correction: A smartphone-based three-in-one biosensor for co-detection of SARS-CoV-2 viral RNA, antigen and antibody. Chem. Commun. (Camb., Engl). 58 (48), 6869. https://doi.org/10.1039/d2cc90184f (2022).
-
Najjar, D. et al. A lab-on-a-chip for the concurrent electrochemical detection of SARS-CoV-2 RNA and anti-SARS-CoV-2 antibodies in saliva and plasma. Nat. Biomedical Eng. 6 (8), 968–978. https://doi.org/10.1038/s41551-022-00919-w (2022).
-
Li, Y., Li, S., Wang, J. & Liu, G. CRISPR/Cas systems towards Next-Generation biosensing. Trends Biotechnol. 37 (7), 730–743. https://doi.org/10.1016/j.tibtech.2018.12.005 (2019).
-
Dincer, C., Bruch, R., Kling, A., Dittrich, P. S. & Urban, G. A. Multiplexed Point-of-Care Testing – xPOCT. Trends Biotechnol. 35 (8), 728–742. https://doi.org/10.1016/j.tibtech.2017.03.013 (2017).
-
Bruch, R. et al. CRISPR-powered electrochemical microfluidic multiplexed biosensor for target amplification-free MiRNA diagnostics. Biosens. Bioelectron. 177, 112887. https://doi.org/10.1016/j.bios.2020.112887 (2021).
-
Broughton, J. P. et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. 38 (7), 870–874. https://doi.org/10.1038/s41587-020-0513-4 (2020).
-
Ali, Z. et al. iSCAN: an RT-LAMP-coupled CRISPR-Cas12 module for rapid, sensitive detection of SARS-CoV-2. Virus Res. 288, 198129. https://doi.org/10.1016/j.virusres.2020.198129 (2020).
-
Sen, A. et al. Paper based loop-mediated isothermal amplification and CRISPR integrated platform for on-site nucleic acid testing of pathogens. Biosens. Bioelectron. 257, 116292. https://doi.org/10.1016/j.bios.2024.116292 (2024).
-
Cao, H. et al. Paper device combining CRISPR/Cas12a and reverse-transcription loop-mediated isothermal amplification for SARS-CoV-2 detection in wastewater. Environ. Sci. Technol. *56*. (18), 13245–13253. https://doi.org/10.1021/acs.est.2c03819 (2022).
