A dialysate-free wearable artificial kidney prototype driven by a liquid–gas phase transition

a-dialysate-free-wearable-artificial-kidney-prototype-driven-by-a-liquid–gas-phase-transition
A dialysate-free wearable artificial kidney prototype driven by a liquid–gas phase transition

Abstract

The wearable artificial kidney has emerged as a promising therapeutic alternative for end-stage renal disease due to its flexibility and portability, effectively clearing water and uremic toxins. However, conventional hemodialysis-based devices rely on liquid–liquid exchange and necessitate large quantities of dialysate to sustain a sufficient concentration gradient across the dialysis membrane, compromising portability and mobility. Here we develop a dialysate-free wearable artificial kidney prototype that uses a blood purifier for water removal, based on a vapor-driven liquid–gas phase transition, and integrates adsorption to remove uremic toxins. The system achieves a high water clearance flux of approximately 7 ml min−1 m−2 and successfully performs renal replacement therapy in rabbits with acute renal injury, efficiently removing water, creatinine and β2-microglobulin. With a current weight of less than 3.8 kg and potential for further engineering optimization, this dialysate-free wearable artificial kidney prototype supports the feasibility of practical portable blood purification, opening avenues for flexible and efficient nephropathy treatment.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 12 digital issues and online access to articles

$119.00 per year

only $9.92 per issue

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Data availability

All data are available in the Article or the Supplementary Information. Source data are provided with this paper.

References

  1. Bello, A. K. et al. Global Kidney Health Atlas: a report by the International Society of Nephrology on the global burden of end-stage kidney disease and capacity for kidney replacement therapy and conservative care across world countries and regions (International Society of Nephrology, 2019); https://www.theisn.org/wp-content/uploads/media/ISN%20Atlas_2023%20Digital.pdf

  2. Cheng, W. et al. Survival outcomes of hemoperfusion and hemodialysis versus hemodialysis in patients with end-stage renal disease: a systematic review and meta-analysis. Blood Purificat. 51, 213–225 (2022).

    Article  Google Scholar 

  3. Locatelli, F. et al. Mortality risk in patients on hemodiafiltration versus hemodialysis: a “real-world” comparison from the DOPPS. Nephrol. Dial. Transpl. 33, 683–689 (2018).

    Article  CAS  Google Scholar 

  4. Powell, J. R. et al. Ten years experience of in-center thrice weekly long overnight hemodialysis. Clin. J. Am. Soc. Nephro. 4, 1097–1101 (2009).

    Article  Google Scholar 

  5. Lacson, E. et al. Survival with three-times weekly in-center nocturnal versus conventional hemodialysis. J. Am. Soc. Nephrol. 23, 687–695 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nesrallah, G. E. et al. Intensive hemodialysis associates with improved survival compared with conventional hemodialysis. J. Am. Soc. Nephrol. 23, 696–705 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McFarlane, P. A. et al. The quality of life and cost utility of home nocturnal and conventional in-center hemodialysis. Kidney Int. 64, 1004–1011 (2003).

    Article  PubMed  Google Scholar 

  8. Groth, T. et al. Wearable and implantable artificial kidney devices for end-stage kidney disease treatment: current status and review. Arti. Organs 47, 649–666 (2022).

    Article  Google Scholar 

  9. Gura, V. et al. Technical breakthroughs in the wearable artificial kidney (WAK). Clin. J. Am. Soc. Nephro. 4, 1441–1448 (2009).

    Article  Google Scholar 

  10. Davenport, A. et al. A wearable haemodialysis device for patients with end-stage renal failure: a pilot study. Lancet 370, 2005–2010 (2007).

    Article  PubMed  Google Scholar 

  11. Ramada, D. L. et al. Portable, wearable and implantable artificial kidney systems: needs, opportunities and challenges. Nat. Rev. Nephrol. 19, 481–490 (2023).

    Article  PubMed  Google Scholar 

  12. Gura, V. et al. A wearable artificial kidney for patients with end-stage renal disease. JCI Insight 1, e86397 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zamanzadeh, D. et al. Data-driven prediction of continuous renal replacement therapy survival. Nat. Commun. 15, 5440 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Luo, J., Fan, J.-B. & Wang, S. Recent progress of microfluidic devices for hemodialysis. Small 16, 1904076 (2020).

    Article  CAS  Google Scholar 

  15. Savage, N. Could implantable artificial kidneys end the need for dialysis?. Nature 615, S12–S13 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Cassie, A. B. D. & Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944).

    Article  CAS  Google Scholar 

  17. Cassie, A. B. D. Contact angles. Faraday Discuss. 3, 11–16 (1948).

    Article  Google Scholar 

  18. Wang, D. et al. Design of robust superhydrophobic surfaces. Nature 582, 55–59 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Deng, X., Mammen, L., Butt, H.-J. & Vollmer, D. Candle soot as a template for a transparent robust superamphiphobic coating. Science 335, 66–70 (2012).

    Article  Google Scholar 

  20. Paven, M. et al. Super liquid-repellent gas membranes for carbon dioxide capture and heart-lung machines. Nat. Commun. 4, 2512 (2013).

    Article  PubMed  Google Scholar 

  21. Rosina, E. K. J., Šuta, D., Kolářová, H., Málek, J. & Krajči, L. Temperature dependence of blood surface tension. Physiol. Res. 56, S93–S98 (2007).

    Article  PubMed  Google Scholar 

  22. Song, X. et al. Transient blood thinning during extracorporeal blood purification via the inactivation of coagulation factors by hydrogel microspheres. Nat. Biomed. Eng. 5, 1143–1156 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Xu, T. et al. Self-anticoagulant sponge for whole blood auto-transfusion and its mechanism of coagulation factor inactivation. Nat. Commun. 14, 4875 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pan, M. et al. Aggregation disruption induced multi-scale mediating strategy for anticoagulation in blood contacting devices. Adv. Mater. 35, 2412701 (2024).

    Article  Google Scholar 

  25. Ji, H. et al. Antithrombotic coating with sheltered positive charges prevents contact activation by controlling factor XII–biointerface binding. Nat. Mater. 24, 626–636 (2025).

  26. Brown, L. I. O.The Clausius-Clapeyron equation. J. Chem. Educ. 28, 428–428 (1951).

    Article  CAS  Google Scholar 

  27. Tan, Y. et al. Liquid pressure guided superhydrophobic surfaces with adaptive adhesion and stability. Adv. Mater. 34, 2202167 (2022).

    Article  CAS  Google Scholar 

  28. Butt, H.-J. et al. Design principles for superamphiphobic surfaces. Soft Matter 9, 418–428 (2013).

    Article  CAS  Google Scholar 

  29. Gu, S. et al. Surface modification of polysulfones via one-pot ATRP and click chemistry: zwitterionic graft complex and their hemocompatibility. Fiber. Polym. 17, 161–165 (2016).

    Article  CAS  Google Scholar 

  30. Tang, M. et al. Heparin-like surface modification of polyethersulfone membrane and its biocompatibility. J. Colloid Interf. Sci. 386, 428–440 (2012).

    Article  CAS  Google Scholar 

  31. Ran, F. et al. Fabrication and cytocompatibility evaluation for blood-compatible polyethersulfone membrane modified by a synthesized poly (vinyl pyrrolidone)-block-poly (acrylate-graft-poly(methyl methacrylate))-block -poly-(vinyl pyrrolidone). Polym. Adv. Technol. 27, 591–596 (2016).

    Article  CAS  Google Scholar 

  32. Shakaib, M., Ahmad, I., Yunus, R. M. & Noor, M. Z. Preparation and characterization of modified nylon 66 membrane for blood purification. Int. J. Polym. Mater. 63, 80–85 (2013).

    Article  CAS  Google Scholar 

  33. Lu, Q., Shi, W., Yang, H. & Wang, X. Nanoconfined water-molecule channels for high-yield solar vapor generation under weaker sunlight. Adv. Mater. 32, 2001544 (2020).

    Article  CAS  Google Scholar 

  34. Rezus, Y. L. A. & Bakker, H. J. Effect of urea on the structural dynamics of water. Proc. Natl Acad. Sci. USA 103, 18417–18420 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Léon, I. et al. Looking for the elusive imine tautomer of creatinine: different states of aggregation studied by quantum chemistry and molecular spectroscopy. ChemPlusChem. 86, 1374–1386 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chen, J. et al. Broad-spectrum clearance of lipopolysaccharides from blood based on a hemocompatible dihistidine polymer. ACS Appl. Mater. 15, 32251–32261 (2023).

    Article  CAS  Google Scholar 

  37. Fan, J.-B. et al. Bioinspired microfluidic device by integrating a porous membrane and heterostructured nanoporous particles for biomolecule cleaning. ACS Nano 13, 8374–8381 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Shi, Z. et al. Specific clearance of lipopolysaccharide from blood based on Peptide bottlebrush polymer for sepsis therapy. Adv. Mater. 35, 2302560 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the help of the Experimental Animal Center of West China Hospital Sichuan University for the animal experiments. We are grateful for the hemoperfusion resin adsorbents provided by Chongqing Healthcom Blood Purification Equipment Research and Development Co., Ltd. We are grateful for the assistance provided by J. Chen in the design and fabrication of dialysate-free WAK prototype. We are grateful to R. Zhong of the Institute of Blood Transfusion (IBT), Chinese Academy of Medical Sciences (CAMS)/Peking Union Medical College (PUMC), for help in the characterization of hemocompatibility, especially the deformability of red blood cells. We sincerely thank the Analysis and Testing Center of the University of Electronic Science and Technology of China for the technical support and assistance provided in the surface morphology characterization of GBMs. We acknowledge funding from the National Natural Science Foundation of China (22325201 (X.D.), 22205033 (J.L.) and 22275028 (D.W.)).

Author information

Author notes

  1. These authors contributed equally: Jing Luo, Huali Yu.

Authors and Affiliations

  1. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China

    Jing Luo, Huali Yu, Dehui Wang, Bingyang Lu, Jiaxin Liu, Jinlong Yang, Yiming Zhang & Xu Deng

  2. The Experimental Animal Center; Department of Nephrology, West China Hospital of Sichuan University, Chengdu, People’s Republic of China

    Xijing Yang, Yupei Li & Baihai Su

  3. College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, People’s Republic of China

    Shengjun Cheng, Xianda Liu, Qiang Wei, Weifeng Zhao & Changsheng Zhao

  4. Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China

    Fei Deng & Guisen Li

  5. Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, People’s Republic of China

    Xu Deng

Authors

  1. Jing Luo
  2. Huali Yu
  3. Xijing Yang
  4. Dehui Wang
  5. Bingyang Lu
  6. Jiaxin Liu
  7. Jinlong Yang
  8. Yiming Zhang
  9. Shengjun Cheng
  10. Xianda Liu
  11. Yupei Li
  12. Fei Deng
  13. Guisen Li
  14. Qiang Wei
  15. Weifeng Zhao
  16. Baihai Su
  17. Changsheng Zhao
  18. Xu Deng

Contributions

J. Luo, C.Z., D.W. and X.D. conceptualized the project. J. Luo, H.Y., D.W. and X.D. developed the methodology. J. Luo, H.Y., B.L., J. Liu, J.Y. and Y.Z. prepared the samples and performed the characterization. X.Y., S.C., X.L., Y.L., F.D., G.L., Q.W., W.Z. and B.S. supervised the hemocompatibility and animal experiment. J. Luo, H.Y. and X.Y. performed the animal experiments. J. Luo, H.Y., C.Z., D.W. and X.D. developed the dialysate-free WAK prototype. All authors conducted the investigations. J. Luo, D.W. and X.D. acquired funding. D.W. and X.D. administered the project. Q.W., Y.L., W.Z., C.Z., D.W. and X.D. supervised the project. J. Luo wrote the original draft. All authors reviewed and edited the paper.

Corresponding authors

Correspondence to Dehui Wang, Changsheng Zhao or Xu Deng.

Ethics declarations

Competing interests

D.W., J. Luo and X.D. report the submission of a provisional patent application (patent application number 202210934680.9, China) encompassing the technologies described.

Peer review

Peer review information

Nature Chemical Engineering thanks Maria Grazia De Angelis, Bozhi Tian and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Yu, H., Yang, X. et al. A dialysate-free wearable artificial kidney prototype driven by a liquid–gas phase transition. Nat Chem Eng (2026). https://doi.org/10.1038/s44286-026-00355-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s44286-026-00355-6