A disease-severity-responsive nanoparticle enables potent ghrelin messenger RNA therapy in osteoarthritis

a-disease-severity-responsive-nanoparticle-enables-potent-ghrelin-messenger-rna-therapy-in-osteoarthritis
A disease-severity-responsive nanoparticle enables potent ghrelin messenger RNA therapy in osteoarthritis
  • Katz, J. N., Arant, K. R. & Loeser, R. F. Diagnosis and treatment of hip and knee osteoarthritis: a review. JAMA 325, 568–578 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang, P., Hu, K., Jin, L. & Luo, Z. A brief review of current treatment options for osteoarthritis including disease-modifying osteoarthritis drugs (DMOADs) and novel therapeutics. Ann. Med. Surg. 86, 4042–4048 (2024).

    Article  Google Scholar 

  • Li, X., Shen, L., Deng, Z. & Huang, Z. New treatment for osteoarthritis: gene therapy. Precis. Clin. Med. 6, pbad014 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans, C. H., Ghivizzani, S. C. & Robbins, P. D. Osteoarthritis gene therapy in 2022. Curr. Opin. Rheumatol. 35, 37–43 (2023).

    Article  PubMed  Google Scholar 

  • Bedingfield, S. K. et al. Amelioration of post-traumatic osteoarthritis via nanoparticle depots delivering small interfering RNA to damaged cartilage. Nat. Biomed. Eng. 5, 1069–1083 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nap, R. J. & Szleifer, I. Structure and interactions of aggrecans: statistical thermodynamic approach. Biophys. J. 95, 4570–4583 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bittersohl, B. et al. Delayed gadolinium-enhanced magnetic resonance imaging of hip joint cartilage: pearls and pitfalls. Orthop. Rev. 3, e11 (2011).

    Google Scholar 

  • Tiderius, C. J., Olsson, L. E., Leander, P., Ekberg, O. & Dahlberg, L. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in early knee osteoarthritis. Magn. Reson. Med. 49, 488–492 (2003).

    Article  PubMed  Google Scholar 

  • Xiao, S., Tang, Y., Lin, Y., Lv, Z. & Chen, L. Tracking osteoarthritis progress through cationic nanoprobe-enhanced photoacoustic imaging of cartilage. Acta Biomater. 109, 153–162 (2020).

    Article  PubMed  CAS  Google Scholar 

  • Chen, L. et al. Cationic poly-l-lysine-encapsulated melanin nanoparticles as efficient photoacoustic agents targeting to glycosaminoglycans for the early diagnosis of articular cartilage degeneration in osteoarthritis. Nanoscale 10, 13471–13484 (2018).

    Article  PubMed  CAS  Google Scholar 

  • Lu, R. et al. Gadolinium-hyaluronic acid nanoparticles as an efficient and safe magnetic resonance imaging contrast agent for articular cartilage injury detection. Bioact. Mater. 5, 758–767 (2020).

    PubMed  PubMed Central  Google Scholar 

  • Fazeli, P. K. et al. Treatment with a ghrelin agonist in outpatient women with anorexia nervosa: a randomized clinical trial. J. Clin. Psychiatry 79, 17m11585 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tschop, M., Smiley, D. L. & Heiman, M. L. Ghrelin induces adiposity in rodents. Nature 407, 908–913 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Guillory, B. et al. Deletion of ghrelin prevents aging-associated obesity and muscle dysfunction without affecting longevity. Aging Cell 16, 859–869 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baatar, D., Patel, K. & Taub, D. D. The effects of ghrelin on inflammation and the immune system. Mol. Cell. Endocrinol. 340, 44–58 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Andrews, Z. B. et al. UCP2 mediates ghrelin’s action on NPY/AgRP neurons by lowering free radicals. Nature 454, 846–851 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stoyanova, I. I. Ghrelin: a link between ageing, metabolism and neurodegenerative disorders. Neurobiol. Dis. 72 Pt A, 72–83 (2014).

    Article  PubMed  CAS  Google Scholar 

  • Sibilia, V. et al. Pharmacological characterization of the ghrelin receptor mediating its inhibitory action on inflammatory pain in rats. Amino Acids 43, 1751–1759 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun, J. et al. Role and molecular mechanism of ghrelin in degenerative musculoskeletal disorders. J. Cell. Mol. Med. 27, 3681–3691 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, J. et al. Ghrelin prevents articular cartilage matrix destruction in human chondrocytes. Biomed. Pharmacother. 98, 651–655 (2018).

    Article  PubMed  CAS  Google Scholar 

  • Qu, R. et al. Ghrelin protects against osteoarthritis through interplay with Akt and NF-kappaB signaling pathways. FASEB J. 32, 1044–1058 (2018).

    Article  PubMed  CAS  Google Scholar 

  • Bautista, C. A., Park, H. J., Mazur, C. M., Aaron, R. K. & Bilgen, B. Effects of chondroitinase ABC-mediated proteoglycan digestion on decellularization and recellularization of articular cartilage. PLoS ONE 11, e0158976 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergholt, N. L., Lysdahl, H., Lind, M. & Foldager, C. B. A standardized method of applying toluidine blue metachromatic staining for assessment of chondrogenesis. Cartilage 10, 370–374 (2019).

    Article  PubMed  CAS  Google Scholar 

  • Bajpayee, A. G. & Grodzinsky, A. J. Cartilage-targeting drug delivery: can electrostatic interactions help? Nat. Rev. Rheumatol. 13, 183–193 (2017).

    Article  PubMed  CAS  Google Scholar 

  • Gao, T. et al. Non-destructive spatial mapping of glycosaminoglycan loss in native and degraded articular cartilage using confocal Raman microspectroscopy. Front. Bioeng. Biotechnol. 9, 744197 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Pauli, C. et al. Comparison of cartilage histopathology assessment systems on human knee joints at all stages of osteoarthritis development. Osteoarthritis Cartilage 20, 476–485 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kleuskens, M. W. A., van Donkelaar, C. C., Kock, L. M., Janssen, R. P. A. & Ito, K. An ex vivo human osteochondral culture model. J. Orthop. Res. 39, 871–879 (2021).

    Article  PubMed  CAS  Google Scholar 

  • Wei, Y. et al. Phospholipase A2 inhibitor-loaded micellar nanoparticles attenuate inflammation and mitigate osteoarthritis progression. Sci. Adv. 7, eabe6374 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Abumanhal-Masarweh, H. et al. Tailoring the lipid composition of nanoparticles modulates their cellular uptake and affects the viability of triple negative breast cancer cells. J. Control. Release 307, 331–341 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uchimura, T. et al. Erythromycin acts through the ghrelin receptor to attenuate inflammatory responses in chondrocytes and maintain joint integrity. Biochem. Pharmacol. 165, 79–90 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drevet, S., Favier, B., Brun, E., Gavazzi, G. & Lardy, B. Mouse models of osteoarthritis: a summary of models and outcomes assessment. Comp. Med. 72, 3–13 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu, L. et al. The role of TRPV1 in different subtypes of dorsal root ganglion neurons in rat chronic inflammatory nociception induced by complete Freund’s adjuvant. Mol. Pain 4, 61 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • DeJulius, C. R. et al. Engineering approaches for RNA-based and cell-based osteoarthritis therapies. Nat. Rev. Rheumatol. 20, 81–100 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, J. et al. Gene therapy for CNS disorders: modalities, delivery and translational challenges. Nat. Rev. Neurosci. 25, 553–572 (2024).

    Article  PubMed  CAS  Google Scholar 

  • Chen, H. et al. Urchin-like ceria nanoparticles for enhanced gene therapy of osteoarthritis. Sci. Adv. 9, eadf0988 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shin, H. J. et al. p47phox siRNA-loaded PLGA nanoparticles suppress ROS/oxidative stress-induced chondrocyte damage in osteoarthritis. Polymers 12, 443 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aini, H. et al. Messenger RNA delivery of a cartilage-anabolic transcription factor as a disease-modifying strategy for osteoarthritis treatment. Sci. Rep. 6, 18743 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan, H. et al. Induction of WNT16 via peptide-mRNA nanoparticle-based delivery maintains cartilage homeostasis. Pharmaceutics 12, 73 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geiger, B. C., Wang, S., Padera, R. F. Jr., Grodzinsky, A. J. & Hammond, P. T. Cartilage-penetrating nanocarriers improve delivery and efficacy of growth factor treatment of osteoarthritis. Sci. Transl. Med. 10, eaat8800 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vedadghavami, A. et al. Cartilage penetrating cationic peptide carriers for applications in drug delivery to avascular negatively charged tissues. Acta Biomater. 93, 258–269 (2019).

    Article  PubMed  CAS  Google Scholar 

  • Konttinen, Y. T. et al. Acidic cysteine endoproteinase cathepsin K in the degeneration of the superficial articular hyaline cartilage in osteoarthritis. Arthritis Rheum. 46, 953–960 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Paulini, F. et al. In vivo evaluation of DMSA-coated magnetic nanoparticle toxicity and biodistribution in rats: a long-term follow-up. Nanomaterials 12, 3513 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dantas, G. P. F., Ferraz, F. S., Andrade, L. M. & Costa, G. M. J. Male reproductive toxicity of inorganic nanoparticles in rodent models: a systematic review. Chem. Biol. Interact. 363, 110023 (2022).

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Vulpe, C., Lammers, T. & Pallares, R. M. Assessing inorganic nanoparticle toxicity through omics approaches. Nanoscale 16, 15928–15945 (2024).

    Article  PubMed  CAS  Google Scholar 

  • Akalu, Y., Molla, M. D., Dessie, G. & Ayelign, B. Physiological effect of ghrelin on body systems. Int. J. Endocrinol. 2020, 1385138 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wakabayashi, H., Arai, H. & Inui, A. The regulatory approval of anamorelin for treatment of cachexia in patients with non-small cell lung cancer, gastric cancer, pancreatic cancer, and colorectal cancer in Japan: facts and numbers. J. Cachexia Sarcopenia Muscle 12, 14–16 (2021).

    Article  PubMed  Google Scholar 

  • Yasar, H. et al. Kinetics of mRNA delivery and protein translation in dendritic cells using lipid-coated PLGA nanoparticles. J. Nanobiotechnol. 16, 72 (2018).

    Article  Google Scholar 

  • Lutz, J. et al. Unmodified mRNA in LNPs constitutes a competitive technology for prophylactic vaccines. npj Vaccines 2, 29 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Pardi, N. et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J. Control. Release 217, 345–351 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qin, S. et al. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct. Target. Ther. 7, 166 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Unti, M. J. & Jaffrey, S. R. Highly efficient cellular expression of circular mRNA enables prolonged protein expression. Cell Chem. Biol. 31, 163–176 e165 (2024).

    Article  PubMed  CAS  Google Scholar 

  • Musumeci, G. et al. Histochemistry as a unique approach for investigating normal and osteoarthritic cartilage. Eur. J. Histochem. 58, 2371 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, L. et al. Self-assembled lipid–polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano 2, 1696–1702 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiao, Y. et al. Combining p53 mRNA nanotherapy with immune checkpoint blockade reprograms the immune microenvironment for effective cancer therapy. Nat. Commun. 13, 758 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kong, N. et al. Synthetic mRNA nanoparticle-mediated restoration of p53 tumor suppressor sensitizes p53-deficient cancers to mTOR inhibition. Sci. Transl. Med. 11, eaaw1565 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang, X. et al. Synthesis of siRNA nanoparticles to silence plaque-destabilizing gene in atherosclerotic lesional macrophages. Nat. Protoc. 17, 748–780 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uchimura, T., Foote, A. T., Smith, E. L., Matzkin, E. G. & Zeng, L. Insulin-like growth factor II (IGF-II) inhibits IL-1beta-induced cartilage matrix loss and promotes cartilage integrity in experimental osteoarthritis. J. Cell. Biochem. 116, 2858–2869 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kawamoto, T. & Kawamoto, K. Preparation of thin frozen sections from nonfixed and undecalcified hard tissues using Kawamoto’s film method (2020). Methods Mol. Biol. 2230, 259–281 (2021).

    Article  PubMed  CAS  Google Scholar 

  • Glasson, S. S., Blanchet, T. J. & Morris, E. A. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthritis Cartilage 15, 1061–1069 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Sleigh, J. N., Weir, G. A. & Schiavo, G. A simple, step-by-step dissection protocol for the rapid isolation of mouse dorsal root ganglia. BMC Res. Notes 9, 82 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaplan, S. R., Bach, F. W., Pogrel, J. W., Chung, J. M. & Yaksh, T. L. Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods 53, 55–63 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Kameda, T., Kaneuchi, Y., Sekiguchi, M. & Konno, S. I. Measurement of mechanical withdrawal thresholds and gait analysis using the CatWalk method in a nucleus pulposus-applied rodent model. J. Exp. Orthop. 4, 31 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawamoto, T. & Kawamoto, K. Preparation of thin frozen sections from nonfixed and undecalcified hard tissues using Kawamot’s film method (2012). Methods Mol. Biol. 1130, 149–164 (2014).

    Article  PubMed  CAS  Google Scholar 

  • McNulty, M. A. et al. A comprehensive histological assessment of osteoarthritis lesions in mice. Cartilage 2, 354–363 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Krenn, V. et al. Synovitis score: discrimination between chronic low-grade and high-grade synovitis. Histopathology 49, 358–364 (2006).

    Article  PubMed  CAS  Google Scholar