A fully degradable triboelectric vagus nerve stimulator for attenuating cardiac remodeling and heart failure at different stages

a-fully-degradable-triboelectric-vagus-nerve-stimulator-for-attenuating-cardiac-remodeling-and-heart-failure-at-different-stages
A fully degradable triboelectric vagus nerve stimulator for attenuating cardiac remodeling and heart failure at different stages

Data availability

The RNA-sequencing data generated in this study have been deposited in the Gene Expression Omnibus (GEO) database under accession code GSE310767. Source data for Supplementary Fig. 3 are available in Figshare (https://doi.org/10.6084/m9.figshare.30877082). All other data generated in this study are provided in the Source Data file 1–3. Source data are provided with this paper.

References

  1. Bozkurt, B. et al. Heart failure epidemiology and outcomes statistics: a report of the heart failure society of America. J. Card. Fail 29, 1412–1451 (2023).

    Google Scholar 

  2. Khan, M. S. et al. Global epidemiology of heart failure. Nat. Rev. Cardiol. 21, 717–734 (2024).

    Google Scholar 

  3. Nakamura, M. & Sadoshima, J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat. Rev. Cardiol. 15, 387–407 (2018).

    Google Scholar 

  4. Pesce, M. et al. Cardiac fibroblasts and mechanosensation in heart development, health and disease. Nat. Rev. Cardiol. 20, 309–324 (2023).

    Google Scholar 

  5. Savarese, G. et al. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res. 118, 3272–3287 (2023).

    Google Scholar 

  6. Burchfield, J. S., Xie, M. & Hill, J. A. Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation 128, 388–400 (2013).

    Google Scholar 

  7. Gentile, F. et al. Treating heart failure by targeting the vagus nerve. Heart Fail Rev. 29, 1201–1215 (2024).

    Google Scholar 

  8. Konstam, M. A. et al. Advances in our clinical understanding of autonomic regulation therapy using vagal nerve stimulation in patients living with heart failure. Front Physiol. 13, 857538 (2022).

    Google Scholar 

  9. Bazoukis, G., Stavrakis, S. & Armoundas, A. A. Vagus nerve stimulation and inflammation in cardiovascular disease: a state-of-the-art review. J. Am. Heart Assoc. 12, e030539 (2023).

    Google Scholar 

  10. Verrier, R. L., Libbus, I., Nearing, B. D. & KenKnight, B. H. Multifactorial benefits of chronic vagus nerve stimulation on autonomic function and cardiac electrical stability in heart failure patients with reduced ejection fraction. Front Physiol. 13, 855756 (2022).

    Google Scholar 

  11. Gold, M. R. et al. Vagus nerve stimulation for the treatment of heart failure: the INOVATE-HF Trial. J. Am. Coll. Cardiol. 68, 149–158 (2016).

    Google Scholar 

  12. Zannad, F. et al. Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial. Eur. Heart J. 36, 425–433 (2015).

  13. Nearing, B. D., Libbus, I., Amurthur, B., KenKnight, B. H. & Verrier, R. L. Acute autonomic engagement assessed by heart rate dynamics during vagus nerve stimulation in patients with heart failure in the ANTHEM-HF trial. J. Cardiovasc. Electrophysiol. 27, 1072–1077 (2016).

  14. Stavrakis, S. et al. Neuromodulation of inflammation to treat heart failure with preserved ejection fraction: a pilot randomized clinical trial. J. Am. Heart Assoc. 11, e023582 (2022).

    Google Scholar 

  15. Jiang, Y., Po, S. S., Amil, F. & Dasari, T. W. Non-invasive low-level tragus stimulation in cardiovascular diseases. Arrhythm. Electrophysiol. Rev. 9, 40–46 (2020).

    Google Scholar 

  16. Booth, L. C., Saseetharan, B., May, C. N. & Yao, S. T. Selective efferent vagal stimulation in heart failure. Exp. Physiol. 109, 2001–2005 (2024).

    Google Scholar 

  17. Tat, T., Libanori, A., Au, C., Yau, A. & Chen, J. Advances in triboelectric nanogenerators for biomedical sensing. Biosens. Bioelectron. 171, 112714 (2021).

    Google Scholar 

  18. Wang, Z. L. & Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006).

    Google Scholar 

  19. Omar, R. et al. Biodegradable, biocompatible, and implantable multifunctional sensing platform for cardiac monitoring. ACS Sens 9, 126–138 (2024).

    Google Scholar 

  20. Kim, Y.-J. et al. High-performing and capacitive-matched triboelectric implants driven by ultrasound. Adv. Mater. 36, 2307194 (2024).

    Google Scholar 

  21. Olofsson, L. P. et al. alpha7 nicotinic acetylcholine receptor and cAMP response element binding protein are essential for prolonged monocyte deactivation by vagus nerve signaling (116.37). J. Immunol. 186, 116.37 (2011).

    Google Scholar 

  22. Olofsson, P. S. et al. Single-pulse and unidirectional electrical activation of the cervical vagus nerve reduces tumor necrosis factor in endotoxemia. Bioelectron. Med. 2, 37–42 (2015).

    Google Scholar 

  23. Tanaka, S. et al. Vagus nerve stimulation activates two distinct neuroimmune circuits converging in the spleen to protect mice from kidney injury. Proc. Natl. Acad. Sci. USA 118, e2021758118 (2021).

    Google Scholar 

  24. Kakinuma, Y. et al. Acetylcholine from vagal stimulation protects cardiomyocytes against ischemia and hypoxia involving additive non-hypoxic induction of HIF-1α. FEBS Lett. 579, 2111–2118 (2005).

    Google Scholar 

  25. Resende, R. R. & Adhikari, A. Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation. Cell Commun. Signal 7, 20 (2009).

    Google Scholar 

  26. Ponikowski, P. et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the european society of cardiology (ESC)developed with the special contribution of the heart failure association (HFA) of the ESC. Eur. Heart J. 37, 2129–2200 (2016).

    Google Scholar 

  27. van der Wal, M. H. L., Jaarsma, T. & van Veldhuisen, D. J. Non-compliance in patients with heart failure; how can we manage it?. Eur. J. Heart Fail 7, 5–17 (2005).

    Google Scholar 

  28. Heidenreich, P. A. et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ. Heart Fail 6, 606–619 (2013).

    Google Scholar 

  29. Miller, L., Birks, E., Guglin, M., Lamba, H. & Frazier, O.H. Use of ventricular assist devices and heart transplantation for advanced heart failure. Circ. Res. 124, 1658–1678 (2019).

    Google Scholar 

  30. Heidenreich, P. A. et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure. J. Am. Coll. Cardiol. 79, e263–e421 (2022).

    Google Scholar 

  31. Borlaug, B. A. Evaluation and management of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 17, 559–573 (2020).

    Google Scholar 

  32. Leopold, J. A. & Loscalzo, J. The emerging role of precision medicine in cardiovascular disease. Circ. Res. 122, 1302–1315 (2018).

    Google Scholar 

  33. Roy, A. et al. Cardiac acetylcholine inhibits ventricular remodeling and dysfunction under pathologic conditions. FASEB J. 30, 688–701 (2016).

    Google Scholar 

  34. Zhao, L. et al. Choline attenuates cardiac fibrosis by inhibiting p38MAPK signaling possibly by acting on M3 muscarinic acetylcholine receptor. Front Pharm. 10, 1386 (2019).

    Google Scholar 

  35. Leib, C. et al. Role of the cholinergic antiinflammatory pathway in murine autoimmune myocarditis. Circ. Res 109, 130–140 (2011).

    Google Scholar 

  36. Borovikova, L. V. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462 (2000).

    Google Scholar 

  37. Báez-Pagán, C. A., Delgado-Vélez, M. & Lasalde-Dominicci, J. A. Activation of the macrophage α7 nicotinic acetylcholine receptor and control of inflammation. J. Neuroimmun. Pharm. 10, 468–476 (2015).

    Google Scholar 

  38. Frangogiannis, N. G. The extracellular matrix in ischemic and nonischemic heart failure. Circ. Res. 125, 117–146 (2019).

    Google Scholar 

  39. Floras, J. S. & Ponikowski, P. The sympathetic/parasympathetic imbalance in heart failure with reduced ejection fraction. Eur. Heart J. 36, 1974–1982 (2015).

    Google Scholar 

  40. Olshansky, B., Sabbah, H. N., Hauptman, P. J. & Colucci, W. S. Parasympathetic nervous system and heart failure. Circulation 118, 863–871 (2008).

    Google Scholar 

  41. Guo, Z. et al. Neuraminidase 1 deficiency attenuates cardiac dysfunction, oxidative stress, fibrosis, inflammatory via AMPK-SIRT3 pathway in diabetic cardiomyopathy mice. Int J. Biol. Sci. 18, 826–840 (2022).

    Google Scholar 

  42. Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).

    Google Scholar 

Download references

Acknowledgements

We thank the Animal Experimental Center of Renmin Hospital of Wuhan University for animal care and housing support. This work was supported by grants from The Regional Innovation and Development Joint Fund of National Natural Science Foundation of China (No. U22A20269) (Q.Z.T), The National Natural Science Foundation of China (No. 82400281) (C.Y.K), and The Fundamental Research Funds for the Central Universities(2042023kf0016) (C.Y.K), National Natural Science Foundation of China (T2125003, U25A20417) (Z.L.), Beijing Natural Science Foundation (L245015, Z240022, 25JL006) (Z.L.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Author notes

  1. These authors contributed equally: Zhen Guo, Sheng-Yu Chao, Chun-Yan Kong, Ling-Ling Xu, Xi Cui.

Authors and Affiliations

  1. Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China

    Zhen Guo, Chun-Yan Kong, Ming-Yu Wang, Yu-Lan Ma, Xiu-Jun Dai & Qi-Zhu Tang

  2. Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, P. R. China

    Zhen Guo, Sheng-Yu Chao, Ling-Ling Xu, Xi Cui & Yi-Chang Quan

  3. TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, P. R. China

    Zhen Guo, Chun-Yan Kong, Ming-Yu Wang, Yu-Lan Ma, Xiu-Jun Dai & Qi-Zhu Tang

  4. School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, P. R. China

    Sheng-Yu Chao & Ling-Ling Xu

  5. Vita Tech Innovation Center, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, P. R. China

    Xi Cui & Zhou Li

  6. School of Biomedical Engineering, Tsinghua University, Beijing, P. R. China

    Xi Cui & Zhou Li

  7. Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, P. R. China

    Yuan Xi

Authors

  1. Zhen Guo
  2. Sheng-Yu Chao
  3. Chun-Yan Kong
  4. Ling-Ling Xu
  5. Xi Cui
  6. Yuan Xi
  7. Yi-Chang Quan
  8. Ming-Yu Wang
  9. Yu-Lan Ma
  10. Xiu-Jun Dai
  11. Zhou Li
  12. Qi-Zhu Tang

Contributions

Z.G., S.Y.C., C.Y.K., L.L.X., and X.C. contributed equally to this work. Z.G. performed animal experiments, surgical procedures, echocardiography, and data analysis. S.Y.C. designed and fabricated the BTENG device and conducted device characterization. C.Y.K. performed histological and molecular analyses. L.L.X. optimized device fabrication and characterization. X.C. conducted electrical measurements. Y.X. performed RNA-sequencing and bioinformatics analyses. Y.C.Q., M.Y.W., Y.L.M., and X.J.D. assisted with experiments and data collection. Z.L. and Q.Z.T. conceived and supervised the project, designed experiments, secured funding, and wrote the manuscript. All authors discussed results and approved the final manuscript.

Corresponding authors

Correspondence to Zhou Li or Qi-Zhu Tang.

Ethics declarations

Competing interests

All authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Stavros Stavrakis, who co-reviewed with Maria Toumpourleka, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Chao, SY., Kong, CY. et al. A fully degradable triboelectric vagus nerve stimulator for attenuating cardiac remodeling and heart failure at different stages. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68619-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41467-026-68619-6