References
-
Li, M., Qian, M., Kyler, K. & Xu, J. Endothelial-vascular smooth muscle cells interactions in atherosclerosis. Front. Cardiovasc. Med. 5, 151 (2018).
-
Cao, G., Xuan, X., Zhang, R., Hu, J. & Dong, H. Gene therapy for cardiovascular disease: Basic research and clinical prospects. Front. Cardiovasc. Med. 8, 760140 (2021).
-
Bennett, M. R. Apoptosis of vascular smooth muscle cells in vascular remodelling and atherosclerotic plaque rupture. Cardiovasc. Res. 41(2), 361–368 (1999).
-
McVey, D. G. et al. Genetic influence on vascular smooth muscle cell apoptosis. Cell Death Dis. 15(6), 402 (2024).
-
Dave, T., Ezhilan, J., Vasnawala, H. & Somani, V. Plaque regression and plaque stabilisation in cardiovascular diseases. Indian J. Endocrinol. Metab. 17(6), 983–989 (2013).
-
Shah, P. K. Mechanisms of plaque vulnerability and rupture. J. Am. Coll. Cardiol. 41(4, supplement), S15–S22 (2003).
-
Low, E. L., Baker, A. H. & Bradshaw, A. C. TGFβ, smooth muscle cells and coronary artery disease: A review. Cell. Signal. 53, 90–101 (2019).
-
Ferrari, G., Cook, B. D., Terushkin, V., Pintucci, G. & Mignatti, P. Transforming growth factor-beta 1 (TGF-beta1) induces angiogenesis through vascular endothelial growth factor (VEGF)-mediated apoptosis. J. Cell. Physiol. 219(2), 449–458 (2009).
-
Nicoli, S., Knyphausen, C. P., Zhu, L. J., Lakshmanan, A. & Lawson, N. D. miR-221 is required for endothelial tip cell behaviors during vascular development. Dev. Cell. 22(2), 418–429 (2012).
-
Barwari, T., Rienks, M. & Mayr, M. MicroRNA-21 and the vulnerability of atherosclerotic plaques. Mol. Ther. 26(4), 938–940 (2018).
-
Khalaji, A. et al. Inhibitory effect of microRNA-21 on pathways and mechanisms involved in cardiac fibrosis development. Ther. Adv. Cardiovasc. Dis. 18, 17539447241253134 (2024).
-
Chen, X., Xie, K., Sun, X., Zhang, C. & He, H. The mechanism of miR-21–5p/TSP-1-mediating exercise on the function of endothelial progenitor cells in aged rats. Int. J. Environ. Res. Public Health. 20, 1255 (2023).
-
Liu, L. Z. et al. MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1α expression. PLoS ONE 6(4), e19139 (2011).
-
Ke, X. et al. Endothelial colony-forming cell-derived exosomal miR-21–5p regulates autophagic flux to promote vascular endothelial repair by inhibiting SIPL1A2 in atherosclerosis. Cell Commun. Signal. 20, 30 (2022).
-
Kilari, S. et al. The role of MicroRNA-21 in venous neointimal hyperplasia: Implications for targeting miR-21 for VNH treatment. Mol Ther. 27(9), 1681–1693 (2019).
-
Schaly, S., Ghebretatios, M. & Prakash, S. Baculoviruses in gene therapy and personalized medicine. Biologics. 15, 115–132 (2021).
-
Pidre, M. L., Arrías, P. N., Amorós Morales, L. C. & Romanowski, V. The magic staff: A comprehensive overview of baculovirus-based technologies applied to human and animal health. Viruses 15(1), 80 (2022).
-
Islam, P. et al. Baculovirus expressing tumor growth factor-β1 (TGFβ1) nanoshuttle augments therapeutic effects for vascular wound healing: design and in vitro analysis. ACS Pharmacol. Transl. Sci. 7 (11), 3419–3428 (2024).
-
Wei, Z. et al. Hydrogels with tunable mechanical plasticity regulate endothelial cell outgrowth in vasculogenesis and angiogenesis. Nat. Commun. 14(1), 8307 (2023).
-
Yu, Y., Xu, S., Li, S. & Pan, H. Genipin-cross-linked hydrogels based on biomaterials for drug delivery: A review. Biomater Sci. 9(5), 1583–1597 (2021).
-
Mo, Z.-W. et al. High-density lipoprotein regulates angiogenesis by long non-coding RNA HDRACA. Signal Transduct. Target. Ther. 8(1), 299 (2023).
-
Qi, J., Liu, T., Pan, J., Miao, P. & Zhang, C. Rapid baculovirus titration assay based on viable cell side scatter (SSC). Anal. Chim. Acta 879, 58–62 (2015).
-
Abosalha AK, Islam P, Boyajian JL, Thareja R, Schaly S, Kassab A, et al. Colon-Targeted Sustained-Release Combinatorial 5-Fluorouracil and Quercetin poly(lactic-co-glycolic) Acid (PLGA) Nanoparticles Show Enhanced Apoptosis and Minimal Tumor Drug Resistance for Their Potential Use in Colon Cancer. ACS Pharmacology & Translational Science. 2024.
-
Ilkar Erdagi, S., Asabuwa Ngwabebhoh, F. & Yildiz, U. Genipin crosslinked gelatin-diosgenin-nanocellulose hydrogels for potential wound dressing and healing applications. Int. J. Biol. Macromol. 149, 651–663 (2020).
-
Samba, I., Hernandez, R., Rescignano, N., Mijangos, C. & Kenny, J. M. Nanocomposite hydrogels based on embedded PLGA nanoparticles in gelatin. Nanocomposites. 1(1), 46–50 (2015).
-
Yadav, B. et al. RGD-decorated PLGA nanoparticles improved effectiveness and safety of cisplatin for lung cancer therapy. Int. J. Pharm. 633, 122587 (2023).
-
Chiu, H. I., Samad, N. A., Fang, L. & Lim, V. Cytotoxicity of targeted PLGA nanoparticles: A systematic review. RSC Adv. 11(16), 9433–9449 (2021).
-
Small, D. A. & Moore, N. F. Measurement of surface charge of baculovirus polyhedra. Appl. Environ. Microbiol. 53(3), 598–602 (1987).
-
Wang, M. et al. MicroRNA-21 regulates vascular smooth muscle cell function via targeting tropomyosin 1 in arteriosclerosis obliterans of lower extremities. Arterioscler. Thromb. Vasc. Biol. 31(9), 2044–2053 (2011).
-
Wang, D. & Atanasov, A. G. The microRNAs regulating vascular smooth muscle cell proliferation: A minireview. Int. J. Mol. Sci. 20(2), 324 (2019).
-
Kang, E. & Kortylewski, M. Lipid nanoparticle-mediated delivery of miRNA mimics to myeloid cells. Methods Mol. Biol. 2691, 337–350 (2023).
-
Berenjabad, N. J., Nejati, V. & Rezaie, J. Angiogenic ability of human endothelial cells was decreased following senescence induction with hydrogen peroxide: Possible role of vegfr-2/akt-1 signaling pathway. BMC Mol. Cell Biol. 23(1), 31 (2022).
-
Sabatel C, Malvaux L, Bovy N, Deroanne CF, Lambert V, Gonzalez M-LA, et al. MicroRNA-21 exhibits antiangiogenic function by targeting rhob expression in endothelial cells. Plos One. 2011;6.
-
Liao, Z. et al. Cardiac telocytes inhibit cardiac microvascular endothelial cell apoptosis through exosomal miRNA-21-5p-targeted cdip1 silencing to improve angiogenesis following myocardial infarction. Theranostics. 11(1), 268–291 (2021).
-
Redondo, S., Navarro-Dorado, J., Ramajo, M., Medina, Ú. & Tejerina, T. The complex regulation of TGF-β in cardiovascular disease. Vasc. Health Risk Manag. 8, 533–539 (2012).
-
Pardali, E., Goumans, M. J. & ten Dijke, P. Signaling by members of the TGF-beta family in vascular morphogenesis and disease. Trends Cell. Biol. 20(9), 556–567 (2010).
-
Goumans, M.-J., Liu, Z. & ten Dijke, P. TGF-β signaling in vascular biology and dysfunction. Cell. Res. 19(1), 116–127 (2009).
-
Wang, S. & Olson, E. N. AngiomiRs–key regulators of angiogenesis. Curr. Opin. Genet. Dev. 19(3), 205–211 (2009).
-
Rodriguez, S. & Huynh-Do, U. The role of PTEN in tumor angiogenesis. J. Oncol. 2012, 141236 (2012).
-
Jiang, B. H. & Liu, L. Z. PI3K/PTEN signaling in angiogenesis and tumorigenesis. Adv. Cancer Res. 102, 19–65 (2009).
-
Alvandi, Z. & Bischoff, J. Endothelial-mesenchymal transition in cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 41(9), 2357–2369 (2021).
-
Huang, S. et al. miR-21 regulates vascular smooth muscle cell function in arteriosclerosis obliterans of lower extremities through AKT and ERK1/2 pathways. Arch. Med. Sci. 15(6), 1490–1497 (2019).
-
Pickett, J. R., Wu, Y., Zacchi, L. F. & Ta, H. T. Targeting endothelial vascular cell adhesion molecule-1 in atherosclerosis: Drug discovery and development of vascular cell adhesion molecule-1–directed novel therapeutics. Cardiovasc. Res. 119(13), 2278–2293 (2023).
-
Her, A. Y. & Shin, E. S. Current management of in-stent restenosis. Korean Circ. J. 48(5), 337–349 (2018).
-
Buccheri, D., Piraino, D., Andolina, G. & Cortese, B. Understanding and managing in-stent restenosis: A review of clinical data, from pathogenesis to treatment. J. Thorac. Dis. 8(10), E1150–E1162 (2016).
-
Méndez-Barbero N, Gutiérrez-Muñoz C, Blanco-Colio LM. Cellular Crosstalk between Endothelial and Smooth Muscle Cells in Vascular Wall Remodeling. Int. J. Mol. Sci. 2021; 22(14).
