A multiomics profile of coordinated defense and key candidate genes against bacterial wilt in tobacco

a-multiomics-profile-of-coordinated-defense-and-key-candidate-genes-against-bacterial-wilt-in-tobacco
A multiomics profile of coordinated defense and key candidate genes against bacterial wilt in tobacco

References

  1. Mansfield, J. et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant. Pathol. 13 (6), 614–629 (2012).

    Google Scholar 

  2. Chong, Z. et al. Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco. Plant. Biotechnol. L. 15 (1), 39–55 (2017).

    Google Scholar 

  3. Lowe-Power, T. M., Khokhani, D. & Allen, C. How Ralstonia solanacearum exploits and thrives in the flowing plant xylem environment. Trends Microbiol. 26 (11), 929–942 (2018).

    Google Scholar 

  4. Sebastian, P., Delphine, L., Caly, Jacob, G. & Malone Bacterial pathogenesis of plants: future challenges from a microbial perspective. Mol. Plant. Pathol. 8 (17), 1298–1313 (2016).

    Google Scholar 

  5. Turner, M. et al. Dissection of bacterial wilt on Medicago truncatula revealed two type III secretion system effectors acting on root infection process and disease development. Plant Physiol. 4 (150), 1713–1722 (2009).

    Google Scholar 

  6. Qian, Y-L. et al. The detection of QTLs controlling bacterial wilt resistance in tobacco (N. tabacum L). Euphytica 2 (192), 259–266 (2013).

    Google Scholar 

  7. Lai, R. Q. et al. Analysis of genetic variation for resistance to tobacco bacterial wilt using linkage and linkage disequilibrium mapping. Chin. Tob. Sci. 40 (06), 1–10 (2019).

    Google Scholar 

  8. Wang, J. et al. High-quality assembled and annotated genomes of Nicotiana tabacum and Nicotiana benthamiana reveal chromosome evolution and changes in defense arsenals. Mol. Plant. 3 (17), 423–437 (2024).

    Google Scholar 

  9. Yuanman, T., Qiuping, L., Ying, L., Linli, Z. & Wei, D. Overexpression of NtPR-Q Up-Regulates Multiple Defense-Related Genes in Nicotiana tabacum and Enhances Plant Resistance to Ralstonia solanacearum. Front Plant. Sci 8, 1963 (2017).

    Google Scholar 

  10. Qiuping, L., Ying, L., Yuanman, T., Juanni, C. & Wei, D. Overexpression of NtWRKY50 increases resistance to ralstonia solanacearum and alters salicylic acid and jasmonic acid production in tobacco. Front Plant. Sci 8, 1710 (2017).

    Google Scholar 

  11. Zhang, H. et al. Comparative transcriptomic analysis of different types of tobacco root systems under Ralstonia solanacearum infection. Chin. Tob. Sci. 45 (06), 7–16 (2024).

    Google Scholar 

  12. Castro-Moretti, R. F., Gentzel, N. I., Mackey, D. & Ana, P. A. Metabolomics as an emerging tool for the study of Plant–Pathogen interactions. Metabolites, 2(10). (2020).

  13. Yang, L., Wei, Z., Valls, M. & Ding, W. Metabolic profiling of resistant and susceptible tobaccos response incited by ralstonia pseudosolanacearum causing bacterial wilt. Front Plant. Sci, 000(12). (2022).

  14. Zhang, S. et al. Expression and metabolic differences in key genes for diterpenoid synthesis among different Flue-Cured tobacco varieties (Lines). J. Northwest. A&F Univ. 47 (9), 1–8 (2019).

    Google Scholar 

  15. Mao, L. et al. Genomic evidence for convergent evolution of gene clusters for Momilactone biosynthesis in land plants. PNAS 22 (117), 12472–12480 (2020).

    Google Scholar 

  16. Yicong, W., Jiayuan, Z., Keming, Q., Ye, L. & Ying, C. Combined analysis of transcriptomics and metabolomics revealed complex metabolic genes for diterpenoids biosynthesis in different organs of Anoectochilus Roxburghii. Chin. Herb. Med. 15 (02), 298–309 (2023).

    Google Scholar 

  17. Heng, Z., Yang, Z. & ,Jian-Kang, Z. Thriving under stress: how plants balance growth and the stress response. Dev. Cell. 5 (55), 529–543 (2020).

    Google Scholar 

  18. Lan, T. et al. Mapping of quantitative trait loci conferring resistance to bacterial wilt in tobacco (Nicotiana tabacum L). Plant. Breed. 133 (5), 672–677 (2014).

    Google Scholar 

  19. He, B., Geng, R., Yang, A. & Ren, M. Genome-wide association analysis of resistance to tobacco bacterial wilt. Chin. Tob. Sci. 41 (5), 1–7 (2020).

    Google Scholar 

  20. Xu, W. et al. The influence of tobacco wheat (Potato) strip intercropping on the occurrence of fusarium root rot in tobacco. Chin. Tob. Sci. 46 (05), 46–52 (2025).

    Google Scholar 

  21. Zhu, Y. et al. Combined transcriptomic and metabolomic analysis reveals the role of phenylpropanoid biosynthesis pathway in the salt tolerance process of sophora alopecuroides. Int. J. Mol. Sci. 22 (5), 2399 (2021).

    Google Scholar 

  22. Kanehisa, M., Furumichi, M., Sato, Y., Matsuura, Y. & Ishiguro-Watanabe, M. KEGG: biological systems database as a model of the real world. Nucleic Acids Res. 53, D672–D677 (2025).

    Google Scholar 

  23. Lin, X. et al. Study on molecular level toxicity of Sb(V) to soil springtails: using a combination of transcriptomics and metabolomics. Science Total Environment, 761. (2021).

  24. Dong, X. et al. A typical NLR recognizes a family of structurally conserved effectors to confer plant resistance against adapted and non-adapted phytophthora pathogens. Mol. Plant. 18 (3), 485–500 (2025).

    Google Scholar 

Download references