References
-
Mansfield, J. et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant. Pathol. 13 (6), 614–629 (2012).
-
Chong, Z. et al. Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco. Plant. Biotechnol. L. 15 (1), 39–55 (2017).
-
Lowe-Power, T. M., Khokhani, D. & Allen, C. How Ralstonia solanacearum exploits and thrives in the flowing plant xylem environment. Trends Microbiol. 26 (11), 929–942 (2018).
-
Sebastian, P., Delphine, L., Caly, Jacob, G. & Malone Bacterial pathogenesis of plants: future challenges from a microbial perspective. Mol. Plant. Pathol. 8 (17), 1298–1313 (2016).
-
Turner, M. et al. Dissection of bacterial wilt on Medicago truncatula revealed two type III secretion system effectors acting on root infection process and disease development. Plant Physiol. 4 (150), 1713–1722 (2009).
-
Qian, Y-L. et al. The detection of QTLs controlling bacterial wilt resistance in tobacco (N. tabacum L). Euphytica 2 (192), 259–266 (2013).
-
Lai, R. Q. et al. Analysis of genetic variation for resistance to tobacco bacterial wilt using linkage and linkage disequilibrium mapping. Chin. Tob. Sci. 40 (06), 1–10 (2019).
-
Wang, J. et al. High-quality assembled and annotated genomes of Nicotiana tabacum and Nicotiana benthamiana reveal chromosome evolution and changes in defense arsenals. Mol. Plant. 3 (17), 423–437 (2024).
-
Yuanman, T., Qiuping, L., Ying, L., Linli, Z. & Wei, D. Overexpression of NtPR-Q Up-Regulates Multiple Defense-Related Genes in Nicotiana tabacum and Enhances Plant Resistance to Ralstonia solanacearum. Front Plant. Sci 8, 1963 (2017).
-
Qiuping, L., Ying, L., Yuanman, T., Juanni, C. & Wei, D. Overexpression of NtWRKY50 increases resistance to ralstonia solanacearum and alters salicylic acid and jasmonic acid production in tobacco. Front Plant. Sci 8, 1710 (2017).
-
Zhang, H. et al. Comparative transcriptomic analysis of different types of tobacco root systems under Ralstonia solanacearum infection. Chin. Tob. Sci. 45 (06), 7–16 (2024).
-
Castro-Moretti, R. F., Gentzel, N. I., Mackey, D. & Ana, P. A. Metabolomics as an emerging tool for the study of Plant–Pathogen interactions. Metabolites, 2(10). (2020).
-
Yang, L., Wei, Z., Valls, M. & Ding, W. Metabolic profiling of resistant and susceptible tobaccos response incited by ralstonia pseudosolanacearum causing bacterial wilt. Front Plant. Sci, 000(12). (2022).
-
Zhang, S. et al. Expression and metabolic differences in key genes for diterpenoid synthesis among different Flue-Cured tobacco varieties (Lines). J. Northwest. A&F Univ. 47 (9), 1–8 (2019).
-
Mao, L. et al. Genomic evidence for convergent evolution of gene clusters for Momilactone biosynthesis in land plants. PNAS 22 (117), 12472–12480 (2020).
-
Yicong, W., Jiayuan, Z., Keming, Q., Ye, L. & Ying, C. Combined analysis of transcriptomics and metabolomics revealed complex metabolic genes for diterpenoids biosynthesis in different organs of Anoectochilus Roxburghii. Chin. Herb. Med. 15 (02), 298–309 (2023).
-
Heng, Z., Yang, Z. & ,Jian-Kang, Z. Thriving under stress: how plants balance growth and the stress response. Dev. Cell. 5 (55), 529–543 (2020).
-
Lan, T. et al. Mapping of quantitative trait loci conferring resistance to bacterial wilt in tobacco (Nicotiana tabacum L). Plant. Breed. 133 (5), 672–677 (2014).
-
He, B., Geng, R., Yang, A. & Ren, M. Genome-wide association analysis of resistance to tobacco bacterial wilt. Chin. Tob. Sci. 41 (5), 1–7 (2020).
-
Xu, W. et al. The influence of tobacco wheat (Potato) strip intercropping on the occurrence of fusarium root rot in tobacco. Chin. Tob. Sci. 46 (05), 46–52 (2025).
-
Zhu, Y. et al. Combined transcriptomic and metabolomic analysis reveals the role of phenylpropanoid biosynthesis pathway in the salt tolerance process of sophora alopecuroides. Int. J. Mol. Sci. 22 (5), 2399 (2021).
-
Kanehisa, M., Furumichi, M., Sato, Y., Matsuura, Y. & Ishiguro-Watanabe, M. KEGG: biological systems database as a model of the real world. Nucleic Acids Res. 53, D672–D677 (2025).
-
Lin, X. et al. Study on molecular level toxicity of Sb(V) to soil springtails: using a combination of transcriptomics and metabolomics. Science Total Environment, 761. (2021).
-
Dong, X. et al. A typical NLR recognizes a family of structurally conserved effectors to confer plant resistance against adapted and non-adapted phytophthora pathogens. Mol. Plant. 18 (3), 485–500 (2025).
