A new strategy for constructing microgravity culture environment via gas-liquid coupled oscillatory flow field

a-new-strategy-for-constructing-microgravity-culture-environment-via-gas-liquid-coupled-oscillatory-flow-field
A new strategy for constructing microgravity culture environment via gas-liquid coupled oscillatory flow field

References

  1. Long, M. How to simulate space microgravity environments or effects on the Earth’s surface: From space cell growth in response to microgravity. Chin. Sci. Bull. 59, 2004–2015 (2014).

    Google Scholar 

  2. Zhao, B., Li, D., Hu, Z. & Zhang, S. Progress of multiple ground-based weightlessness or simulated weightlessness cytology research methods. Acad. J. Chin. PLA Med. Sch. 34, 1075–1078 (2013).

    Google Scholar 

  3. Cang, H. Progress of technologies stimulating space environment for biology study. Sci. Technol. Rev. 31, 67–73 (2013).

    Google Scholar 

  4. Jack, J. & W, A. & van Loon. Some history and use of the random positioning machine, RPM, in gravity related research. Adv. Space Res. 39, 1161–1165 (2007).

    Google Scholar 

  5. Brungs, S. et al. Facilities for simulation of microgravity in the ESA ground-based facility programme. Microgravity Sci. Technol. 28, 191–203 (2016).

    Google Scholar 

  6. Knight, T. A. V. On the direction of the radicle and Germen during the vegetation of seeds. Philos. Trans. R. Soc. Lond. 96, 99–108 (1806).

    Google Scholar 

  7. Newcombe, F. C. Limitations of the Klinostat as an instrument for scientific research. Science 20, 376–379 (1904).

    Google Scholar 

  8. Briegleb, W. Ein Modell zur Schwerelosigkeits-Simulation an Mikroorganismen. Naturwissenschaften 54, 167–167 (1967).

    Google Scholar 

  9. Kim, D. et al. Customized small-sized clinostat using 3D printing and gas-permeable polydimethylsiloxane culture dish. npj Microgravity 9, (2023).

  10. Melissa Palma-Jiménez, Y. C. U. & Carlos Villalobos Bermúdez, J. oséR. obertoV. egaB. audrit Microgravity and nanomaterials. Int. J. Biophys. 7, 60–68 (2017).

    Google Scholar 

  11. Arndt, F. et al. Systematic screening of 42 vancomycin-resistant Enterococcus faecium strains for resistance, biofilm, and desiccation in simulated microgravity. npj Microgravity 10, 103 (2024).

    Google Scholar 

  12. Joseph, L. et al. Development of an inexpensive 3D clinostat and comparison with other microgravity simulators using Mycobacterium marinum. Front. Space Technol. 3, 1032610 (2022).

    Google Scholar 

  13. Kim, Y. J. et al. Time-averaged simulated microgravity (taSMG) inhibits proliferation of lymphoma cells, L-540 and HDLM-2, using a 3D clinostat. Biomed. Eng. online 16, 1–12 (2017).

    Google Scholar 

  14. Hoson, T., Kamisaka, S., Masuda, Y., Yamashita, M. & Buchen, B. Evaluation of the three-dimensional clinostat as a simulator of weightlessness. Planta 203, S187–S197 (1997).

    Google Scholar 

  15. Borst, A. G. & Loon, J. J. W. A. van. Technology and Developments for the Random Positioning Machine, RPM. Microgravity Sci. Technol. 21, 287–292 (2009).

    Google Scholar 

  16. Huijser R. H., Desktop RPM: new small size microgravity simulator for the bioscience laboratory. Fokker Space 1 (2000).

  17. Wuest, S. L. et al. A novel microgravity simulator applicable for three-dimensional cell culturing. Microgravity Sci. Technol. 26, 77–88 (2014).

    Google Scholar 

  18. Hammond, T. & Allen, P. The Bonn criteria: minimal experimental parameter reporting for clinostat and random positioning machine experiments with cells and tissues. Microgravity Sci. Technol. 23, 271–275 (2011).

    Google Scholar 

  19. Schwarz, R. P., Goodwin, T. J. & Wolf, D. A. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J. Tissue Cult. Methods 14, 51–57 (1992).

    Google Scholar 

  20. Drochon, A., Lesieur, R. & Durand, M. Fluid dynamics characterisation of a rotating bioreactor for tissue engineering. Med. Eng. Phys. 105, 103831 (2022).

    Google Scholar 

  21. Acres, J. M., Youngapelian, M. J. & Nadeau, J. The influence of spaceflight and simulated microgravity on bacterial motility and chemotaxis. npj Microgravity 7, 7 (2021).

    Google Scholar 

  22. BeiHui. A study of random localizer rotational speed settings for simulating microgravity effects. CNKI:CDMD:2.1016.056992 Master’s thesis, Dalian Maritime University (2016).

  23. Liu, T., Li, X., Sun, X., Ma, X. & Cui, Z. Analysis on forces and movement of cultivated particles in a rotating wall vessel bioreactor. Biochem. Eng. J. 18, 97–104 (2004).

    Google Scholar 

  24. Lai Y. Principles and Applications of Rotary Cell Culture Systems. Biol. Chem. Eng. 6 CNKI:SUN:SWHG.0.2020-03-045 (2020).

  25. Herranz, R. et al. Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology 13, 1–17 (2013).

    Google Scholar 

  26. Mansour, J. et al. Clinorotation inhibits myotube formation by fluid motion, not by simulated microgravity. Eur. J. Cell Biol. 102, 151330 (2023).

    Google Scholar 

  27. Wang C. et al. A Method of Simulating Weightless Fluid by U-Tube. 2023 9th International Conference on Fluid Power and Mechatronics (FPM) IEEE, 1–9. https://doi.org/10.1109/fpm57590.2023.10565513 (2023).

  28. Wu W. Fluid Mechanics. (Peking University Press, 2021).

  29. Webber, N. B. Turbulent Flow—Darcy-Weisbach Formula. 92-92. https://doi.org/10.1201/9781315273426-32 (CRC Press, 2018).

  30. Cisowska, I. & Kotowski, A. The local resistance in plastic pipe fittings. Environ. Prot. Eng. 30, 75–88 (2004).

    Google Scholar 

  31. ANSYS Inc. ANSYS Fluent-2019R1 theory guide. (ANSYS Inc., Canonsbury, 2019).

  32. Brackbill, J. U., Kothe, D. B. & Zemach, C. A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992).

    Google Scholar 

  33. Winning, H. K. & Coole, T. Explicit friction factor accuracy and computational efficiency for turbulent flow in pipes. Flow Turbulence Combust. 90, 1–27 (2013).

    Google Scholar 

  34. Krause, E. Fluid Mechanics I. 1–30. https://doi.org/10.1007/3-540-27223-2_1 (Springer-Verlag, Berlin/Heidelberg, 2005).

  35. Krause, E. Fluid Mechanics II. 31–67. https://doi.org/10.1007/3-540-27223-2_2 (Springer-Verlag, Berlin/Heidelberg, 2005).

  36. Hu W. & Xu S. Microgravity fluid mechanics. 1 (Science Press, 1999).

  37. Lim, C. T., Zhou, E. H. & Quek, S. T. Mechanical models for living cells—a review. J. Biomech. 39, 195–216 (2006).

    Google Scholar 

  38. Cogoli, A. The effect of hypogravity and hypergravity on cells of the immune system. J. Leukoc. Biol. 54, 259–268 (1993).

    Google Scholar 

  39. Maier, J. A. M., Cialdai, F., Monici, M. & Morbidelli, L. The impact of microgravity and hypergravity on endothelial cells. BioMed. Res. Int. 2015, 434803 (2015).

    Google Scholar 

  40. Costa-Almeida, R. et al. Effects of hypergravity on the angiogenic potential of endothelial cells. J. R. Soc. Interface 13, 20160688 (2016).

    Google Scholar 

  41. Gebken, J. et al. Hypergravity stimulates collagen synthesis in human osteoblast-like cells: evidence for the involvement of p44/42 MAP-kinases (ERK 1/2). J. Biochem. 126, 676–682 (1999).

    Google Scholar 

  42. Kacena, M. A., Todd, P., Gerstenfeld, L. C. & Landis, W. J. Experiments with osteoblasts cultured under hypergravity conditions. Microgravity-Sci. Technol. 15, 28–34 (2004).

    Google Scholar 

  43. Wang X., Yang W., Zhang C. & Ye J. Biomechanical Study of MC3T3-E1 Osteoblasts under Hypergravity. 2019 International Conference on Mechatronics and Automation (ICMA) IEEE, 1372-1376. https://doi.org/10.1109/icma.2019.8816575 (2019).

  44. Yang W. Biomechanical Response of Mouse Osteoblasts to Hypergravity Microenvironment. Master’s thesis, Tianjin university of technology. https://doi.org/10.27360/d.CNKI.gtlgy.2021.000232 (2021).

  45. Rivalain, N., Roquain, J. & Demazeau, G. Development of high hydrostatic pressure in biosciences: Pressure effect on biological structures and potential applications in Biotechnologies. Biotechnol. Adv. 28, 659–672 (2010).

    Google Scholar 

  46. Waletzko, J. et al. Devitalizing effect of high hydrostatic pressure on human cells—influence on cell death in osteoblasts and chondrocytes. Int. J. Mol. Sci. 21, 3836 (2020).

    Google Scholar 

  47. Clementi, A., Egger, D., Charwat, V. & Kasper, C. Cell culture conditions: cultivation of stem cells under dynamic conditions. Cell Eng. Regener. 2020, 415–447 (2020).

    Google Scholar 

  48. Correia, C. et al. Dynamic culturing of cartilage tissue: the significance of hydrostatic pressure. Tissue Eng. Part A 18, 1979–1991 (2012).

    Google Scholar 

  49. Ozawa, H. et al. Effect of a continuously applied compressive pressure on mouse osteoblast-like cells (MC3T3-E1) in vitro. J. Cell. Physiol. 142, 177–185 (1990).

    Google Scholar 

  50. Chen, L.-J., Wang, W.-L. & Chiu, J.-J. Vascular endothelial mechanosensors in response to fluid shear stress. Mol. Cell. Mechanobiol. 2016, 29–56 (2016).

    Google Scholar 

  51. Chisti, Y. Hydrodynamic damage to animal cells. Crit. Rev. Biotechnol. 21, 67–110 (2001).

    Google Scholar 

  52. Maan, R., Rani, G., Menon, G. I. & Pullarkat, P. A. Modeling cell-substrate de-adhesion dynamics under fluid shear. Phys. Biol. 15, 046006 (2018).

    Google Scholar 

  53. Kieran, P. M., MacLoughlin, P. F. & Malone, D. M. Plant cell suspension cultures: some engineering considerations. J. Biotechnol. 59, 39–52 (1997).

    Google Scholar 

  54. Nilsson, K., Buzsaky, F. & Mosbach, K. Growth of anchorage–dependent cells on macroporous microcarriers. Bio/Technol. 4, 989–990 (1986).

    Google Scholar 

  55. Hong, H. et al. Ex vivo enhancement of CD8 + T cell activity using functionalized hydrogel encapsulating Tonsil-derived lymphatic endothelial cells. Theranostics 15, 850 (2025).

    Google Scholar 

  56. Nicodemus, G. D. & Bryant, S. J. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng. Part B Rev. 14, 149–165 (2008).

    Google Scholar 

  57. O’Flaherty, R. et al. Mammalian cell culture for production of recombinant proteins: A review of the critical steps in their biomanufacturing. Biotechnol. Adv. 43, 107552 (2020).

    Google Scholar 

Download references