References
-
Long, M. How to simulate space microgravity environments or effects on the Earth’s surface: From space cell growth in response to microgravity. Chin. Sci. Bull. 59, 2004–2015 (2014).
-
Zhao, B., Li, D., Hu, Z. & Zhang, S. Progress of multiple ground-based weightlessness or simulated weightlessness cytology research methods. Acad. J. Chin. PLA Med. Sch. 34, 1075–1078 (2013).
-
Cang, H. Progress of technologies stimulating space environment for biology study. Sci. Technol. Rev. 31, 67–73 (2013).
-
Jack, J. & W, A. & van Loon. Some history and use of the random positioning machine, RPM, in gravity related research. Adv. Space Res. 39, 1161–1165 (2007).
-
Brungs, S. et al. Facilities for simulation of microgravity in the ESA ground-based facility programme. Microgravity Sci. Technol. 28, 191–203 (2016).
-
Knight, T. A. V. On the direction of the radicle and Germen during the vegetation of seeds. Philos. Trans. R. Soc. Lond. 96, 99–108 (1806).
-
Newcombe, F. C. Limitations of the Klinostat as an instrument for scientific research. Science 20, 376–379 (1904).
-
Briegleb, W. Ein Modell zur Schwerelosigkeits-Simulation an Mikroorganismen. Naturwissenschaften 54, 167–167 (1967).
-
Kim, D. et al. Customized small-sized clinostat using 3D printing and gas-permeable polydimethylsiloxane culture dish. npj Microgravity 9, (2023).
-
Melissa Palma-Jiménez, Y. C. U. & Carlos Villalobos Bermúdez, J. oséR. obertoV. egaB. audrit Microgravity and nanomaterials. Int. J. Biophys. 7, 60–68 (2017).
-
Arndt, F. et al. Systematic screening of 42 vancomycin-resistant Enterococcus faecium strains for resistance, biofilm, and desiccation in simulated microgravity. npj Microgravity 10, 103 (2024).
-
Joseph, L. et al. Development of an inexpensive 3D clinostat and comparison with other microgravity simulators using Mycobacterium marinum. Front. Space Technol. 3, 1032610 (2022).
-
Kim, Y. J. et al. Time-averaged simulated microgravity (taSMG) inhibits proliferation of lymphoma cells, L-540 and HDLM-2, using a 3D clinostat. Biomed. Eng. online 16, 1–12 (2017).
-
Hoson, T., Kamisaka, S., Masuda, Y., Yamashita, M. & Buchen, B. Evaluation of the three-dimensional clinostat as a simulator of weightlessness. Planta 203, S187–S197 (1997).
-
Borst, A. G. & Loon, J. J. W. A. van. Technology and Developments for the Random Positioning Machine, RPM. Microgravity Sci. Technol. 21, 287–292 (2009).
-
Huijser R. H., Desktop RPM: new small size microgravity simulator for the bioscience laboratory. Fokker Space 1 (2000).
-
Wuest, S. L. et al. A novel microgravity simulator applicable for three-dimensional cell culturing. Microgravity Sci. Technol. 26, 77–88 (2014).
-
Hammond, T. & Allen, P. The Bonn criteria: minimal experimental parameter reporting for clinostat and random positioning machine experiments with cells and tissues. Microgravity Sci. Technol. 23, 271–275 (2011).
-
Schwarz, R. P., Goodwin, T. J. & Wolf, D. A. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J. Tissue Cult. Methods 14, 51–57 (1992).
-
Drochon, A., Lesieur, R. & Durand, M. Fluid dynamics characterisation of a rotating bioreactor for tissue engineering. Med. Eng. Phys. 105, 103831 (2022).
-
Acres, J. M., Youngapelian, M. J. & Nadeau, J. The influence of spaceflight and simulated microgravity on bacterial motility and chemotaxis. npj Microgravity 7, 7 (2021).
-
BeiHui. A study of random localizer rotational speed settings for simulating microgravity effects. CNKI:CDMD:2.1016.056992 Master’s thesis, Dalian Maritime University (2016).
-
Liu, T., Li, X., Sun, X., Ma, X. & Cui, Z. Analysis on forces and movement of cultivated particles in a rotating wall vessel bioreactor. Biochem. Eng. J. 18, 97–104 (2004).
-
Lai Y. Principles and Applications of Rotary Cell Culture Systems. Biol. Chem. Eng. 6 CNKI:SUN:SWHG.0.2020-03-045 (2020).
-
Herranz, R. et al. Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology 13, 1–17 (2013).
-
Mansour, J. et al. Clinorotation inhibits myotube formation by fluid motion, not by simulated microgravity. Eur. J. Cell Biol. 102, 151330 (2023).
-
Wang C. et al. A Method of Simulating Weightless Fluid by U-Tube. 2023 9th International Conference on Fluid Power and Mechatronics (FPM) IEEE, 1–9. https://doi.org/10.1109/fpm57590.2023.10565513 (2023).
-
Wu W. Fluid Mechanics. (Peking University Press, 2021).
-
Webber, N. B. Turbulent Flow—Darcy-Weisbach Formula. 92-92. https://doi.org/10.1201/9781315273426-32 (CRC Press, 2018).
-
Cisowska, I. & Kotowski, A. The local resistance in plastic pipe fittings. Environ. Prot. Eng. 30, 75–88 (2004).
-
ANSYS Inc. ANSYS Fluent-2019R1 theory guide. (ANSYS Inc., Canonsbury, 2019).
-
Brackbill, J. U., Kothe, D. B. & Zemach, C. A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992).
-
Winning, H. K. & Coole, T. Explicit friction factor accuracy and computational efficiency for turbulent flow in pipes. Flow Turbulence Combust. 90, 1–27 (2013).
-
Krause, E. Fluid Mechanics I. 1–30. https://doi.org/10.1007/3-540-27223-2_1 (Springer-Verlag, Berlin/Heidelberg, 2005).
-
Krause, E. Fluid Mechanics II. 31–67. https://doi.org/10.1007/3-540-27223-2_2 (Springer-Verlag, Berlin/Heidelberg, 2005).
-
Hu W. & Xu S. Microgravity fluid mechanics. 1 (Science Press, 1999).
-
Lim, C. T., Zhou, E. H. & Quek, S. T. Mechanical models for living cells—a review. J. Biomech. 39, 195–216 (2006).
-
Cogoli, A. The effect of hypogravity and hypergravity on cells of the immune system. J. Leukoc. Biol. 54, 259–268 (1993).
-
Maier, J. A. M., Cialdai, F., Monici, M. & Morbidelli, L. The impact of microgravity and hypergravity on endothelial cells. BioMed. Res. Int. 2015, 434803 (2015).
-
Costa-Almeida, R. et al. Effects of hypergravity on the angiogenic potential of endothelial cells. J. R. Soc. Interface 13, 20160688 (2016).
-
Gebken, J. et al. Hypergravity stimulates collagen synthesis in human osteoblast-like cells: evidence for the involvement of p44/42 MAP-kinases (ERK 1/2). J. Biochem. 126, 676–682 (1999).
-
Kacena, M. A., Todd, P., Gerstenfeld, L. C. & Landis, W. J. Experiments with osteoblasts cultured under hypergravity conditions. Microgravity-Sci. Technol. 15, 28–34 (2004).
-
Wang X., Yang W., Zhang C. & Ye J. Biomechanical Study of MC3T3-E1 Osteoblasts under Hypergravity. 2019 International Conference on Mechatronics and Automation (ICMA) IEEE, 1372-1376. https://doi.org/10.1109/icma.2019.8816575 (2019).
-
Yang W. Biomechanical Response of Mouse Osteoblasts to Hypergravity Microenvironment. Master’s thesis, Tianjin university of technology. https://doi.org/10.27360/d.CNKI.gtlgy.2021.000232 (2021).
-
Rivalain, N., Roquain, J. & Demazeau, G. Development of high hydrostatic pressure in biosciences: Pressure effect on biological structures and potential applications in Biotechnologies. Biotechnol. Adv. 28, 659–672 (2010).
-
Waletzko, J. et al. Devitalizing effect of high hydrostatic pressure on human cells—influence on cell death in osteoblasts and chondrocytes. Int. J. Mol. Sci. 21, 3836 (2020).
-
Clementi, A., Egger, D., Charwat, V. & Kasper, C. Cell culture conditions: cultivation of stem cells under dynamic conditions. Cell Eng. Regener. 2020, 415–447 (2020).
-
Correia, C. et al. Dynamic culturing of cartilage tissue: the significance of hydrostatic pressure. Tissue Eng. Part A 18, 1979–1991 (2012).
-
Ozawa, H. et al. Effect of a continuously applied compressive pressure on mouse osteoblast-like cells (MC3T3-E1) in vitro. J. Cell. Physiol. 142, 177–185 (1990).
-
Chen, L.-J., Wang, W.-L. & Chiu, J.-J. Vascular endothelial mechanosensors in response to fluid shear stress. Mol. Cell. Mechanobiol. 2016, 29–56 (2016).
-
Chisti, Y. Hydrodynamic damage to animal cells. Crit. Rev. Biotechnol. 21, 67–110 (2001).
-
Maan, R., Rani, G., Menon, G. I. & Pullarkat, P. A. Modeling cell-substrate de-adhesion dynamics under fluid shear. Phys. Biol. 15, 046006 (2018).
-
Kieran, P. M., MacLoughlin, P. F. & Malone, D. M. Plant cell suspension cultures: some engineering considerations. J. Biotechnol. 59, 39–52 (1997).
-
Nilsson, K., Buzsaky, F. & Mosbach, K. Growth of anchorage–dependent cells on macroporous microcarriers. Bio/Technol. 4, 989–990 (1986).
-
Hong, H. et al. Ex vivo enhancement of CD8 + T cell activity using functionalized hydrogel encapsulating Tonsil-derived lymphatic endothelial cells. Theranostics 15, 850 (2025).
-
Nicodemus, G. D. & Bryant, S. J. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng. Part B Rev. 14, 149–165 (2008).
-
O’Flaherty, R. et al. Mammalian cell culture for production of recombinant proteins: A review of the critical steps in their biomanufacturing. Biotechnol. Adv. 43, 107552 (2020).
