References
-
Parpart, A. K., Lorenz, P. B., Parpart, E. R., Gregg, J. R. & Chase, A. M. The Osmotic Resistance (Fragility) of Human Red Cells. J. Clin. Investigation. 26(4), 636-640 (1947).
-
Jacobs, M. H. & Parpart, A. K. Osmotic properties of the erythrocyte. Biol. Bull. 60, 95–119 https://doi.org/10.2307/1537022 (1931).
-
Pérez-Pacheco, A. et al. Erythrocytes’ osmotic fragility test with a standard abbe refractometer. Revista médica Del. Hosp. Gen. De México. 83, 20–25 (2020).
-
Ciepiela, O., Adamowicz-Salach, A., Zgodzińska, A., Łazowska, M. & Kotuła, I. Flow cytometric osmotic fragility test: increased assay sensitivity for clinical application in pediatric hematology. Cytometry B Clin. Cytom. 94, 189–195 (2018).
-
Walski, T., Chludzińska, L., Komorowska, M. & Witkiewicz, W. Individual Osmotic Fragility Distribution: A New Parameter for Determination of the Osmotic Properties of Human Red Blood Cells. Biomed Res Int 2014, 162102 (2014).
-
Tatu, T. & Sweatman, D. Hemolysis area: A new parameter of erythrocyte osmotic fragility for screening of thalassemia trait. J. Lab. Physicians. 10, 214 (2018).
-
Knychala, M. A. et al. Red cell distribution width and erythrocyte osmotic stability in type 2 diabetes mellitus. J. Cell. Mol. Med. 25, 2505–2516 (2021).
-
Saxena, R. K. & Seshadri, V. Measurement of osmotic resistance of normal and pathological human red blood cells. Indian J. Physiol. Pharmacol. 27, 1–6 (1983).
-
Sutton, D. G. M. & Sellon, D. C. Haematopoietic and immune systems. Equine Med. Surg. Reproduction: Second Ed. 10–210 https://doi.org/10.1016/B978-0-7020-2801-4.00010-9 (2013).
-
Zhan, Y., Loufakis, D. N., Bao, N. & Lu, C. Characterizing osmotic Lysis kinetics under microfluidic hydrodynamic focusing for erythrocyte fragility studies. Lab. Chip. 12, 5063–5068 (2012).
-
Beri, D. et al. Babesiosis and sickle red blood cells: loss of deformability, altered osmotic fragility, and hypervesiculation. Blood 145, 2202–2213 (2025).
-
Sauer, A., Kurzion, T., Meyerstein, D. & Meyerstein, N. Kinetics of hemolysis of normal and abnormal red blood cells in glycerol-containing media. BBA – Biomembr. 1063, 203–208 (1991).
-
Khor, J. & Boo, Y. L. SPTA1-Related Hereditary Spherocytosis: Novel Compound Heterozygous Mutations With Severe Clinical Manifestation. Cureus 17, (2025).
-
Lophaisankit, P. et al. Feline erythrocytic osmotic fragility in normal and anemic Cats—A preliminary study. Vet Sci 12, (2025).
-
Gerda, B. A. et al. Comparative analysis of the osmotic fragility of erythrocytes across various taxa of vertebrates. Žurnal èvolûcionnoj Biohimii I Fiziologii. 60, 460–482 (2024).
-
Igbokwe, N. A. & Igbokwe, I. O. Osmotic fragility during in vitro erythrocyte cytotoxicity induced by aluminium chloride, lead acetate or mercuric chloride in hyposmolar sucrose media. Interdiscip Toxicol. 14, 38–46 (2021).
-
Uchendu, C., Ambali, S. F., Ayo, J. O., Esievo, K. A. N. & Umosen, A. J. Erythrocyte osmotic fragility and lipid peroxidation following chronic co-exposure of rats to Chlorpyrifos and deltamethrin, and the beneficial effect of alpha-lipoic acid. Toxicol. Rep. 1, 373 (2014).
-
Hemmatibardehshahi, S., Brandon-Coatham, M., Holt, A. & Acker, J. P. Variation in the osmotic characteristics of aging red blood cells: insights for cryopreservation optimization. Cytotherapy 27, 661–670 (2025).
-
Correia, M. J. et al. Hematological profile and erythrocyte osmotic fragility of free-living yellow-footed tortoise chelonoidis denticulatus (Linnaeus, 1766). Vet Res. Commun 49, (2025).
-
Peltier, S. et al. Proteostasis and metabolic dysfunction in a distinct subset of storage-induced senescent erythrocytes targeted for clearance. BioRxiv https://doi.org/10.1101/2024.09.11.612195 (2024).
-
de Souza Teixeira, M. B. et al. Toxicological, Hematological, and Pathological Effects of Acute Copper and Lead Intoxication in Grass Carp (Ctenopharyngodon idella). Ecotoxicology (2025). https://doi.org/10.1007/S10646-025-02900-0, doi:10.1007/S10646-025-02900-0.
-
Kogawa, H., Yabushita, N., Satoh, M. & Kageyama, K. In vitro effects of free fatty acids on water content and osmotic fragility of erythrocytes in rabbits. C R Seances Soc. Biol. Fil. 191, 267–272 (1997).
-
Neshev, N. I. et al. Kinetic regularities of erythrocyte hemolysis and hemoglobin oxidation under the action of sulfur-nitrosyl iron complexes as nitric oxide donors. Russ. Chem. Bull. 59, 2215–2218 (2010).
-
Cueff, A. et al. Effects of elevated intracellular calcium on the osmotic fragility of human red blood cells. Cell. Calcium. 47, 29–36 (2010).
-
Sprandel, U. & Zöllner, N. Osmotic fragility of drug carrier erythrocytes. Res. Exp. Med. 185, 77–85 (1985).
-
Murata, K. et al. Structural Determinants of Water Permeation through Aquaporin-1. NATURE vol. 407 www.nature.com (2000).
-
Tradtrantip, L., Jin, B. J., Yao, X., Anderson, M. O. & Verkman, A. S. Aquaporin-Targeted therapeutics: State-of-the-Field. Adv. Exp. Med. Biol. 969, 239–250 (2017).
-
Salman, M. M., Kitchen, P., Yool, A. J. & Bill, R. M. Recent breakthroughs and future directions in drugging Aquaporins. Trends Pharmacol. Sci. 43, 30–42 (2022).
-
Kwang-Hua, C. W. Temperature-dependent viscosity dominated transport control through AQP1 water channel. J. Theor. Biol. 480, 92–98 (2019).
-
Verkman, A. S. Aquaporins in clinical medicine. Annual Revi. Med. 63, 303–316 (2012). https://doi.org/10.1146/annurev-med-043010-193843
-
Kuchel, P. W. & Benga, G. Why does the mammalian red blood cell have aquaporins? BioSystems 82, 189–196 (2005).
-
Xie, H. et al. Molecular mechanisms of Mercury-Sensitive Aquaporins. J. Am. Chem. Soc. 144, 22229–22241 (2022).
-
Day, R. E. et al. Human aquaporins: regulators of transcellular water flow. Biochim. Biophys. Acta. 1840, 1492–1506 (2014).
-
Alleva, K., Chara, O., Amodeo, G. & Aquaporins Another piece in the osmotic puzzle. FEBS Lett. 586, 2991–2999 (2012).
-
Engel, A., Walz, T. & Agre, P. The Aquaporin family of membrane water channels. Curr. Opin. Struct. Biol. 4, 545 (1994).
-
Niemietz, C. M. & Tyerman, S. D. New Potent Inhibitors of Aquaporins: Silver and Gold Compounds Inhibit Aquaporins of Plant and Human Origin. FEBS lett. 531(3), 443-447 (2002).
-
Abir-Awan, M. et al. Inhibitors of mammalian aquaporin water channels. Int. J. Mol. Sci. 20 (2019). https://doi.org/10.3390/ijms20071589
-
Williamson, J., Shanahan, M. & Hochmuth, R. The influence of temperature on red cell deformability. Blood 46, 611–624 (1975).
-
Xia, J., Browning, J. D. & O’Dell, B. L. Decreased plasma membrane thiol concentration is associated with increased osmotic fragility of erythrocytes in zinc-deficient rats. J. Nutr. 129, 814–819 (1999).
-
Igbokwe, N. A. A review of the factors that influence erythrocyte osmotic fragility. Sokoto J. Veterinary Sci. 16, 1 (2019).
-
Brauckmann, S. et al. Lipopolysaccharide-induced hemolysis: evidence for direct membrane interactions. Sci. Rep. 6, (2016).
-
Gwozdzinski, K., Pieniazek, A., Sudak, B. & Kaca, W. Alterations in human red blood cell membrane properties induced by the lipopolysaccharide from proteus mirabilis S1959. Chem. Biol. Interact. 146, 73–80 (2003).
-
Gwoździński, K., Pienia̧zek, A. & Kaca, W. Lipopolysaccharide from proteus mirabilis O29 induces changes in red blood cell membrane lipids and proteins. Int. J. Biochem. Cell. Biol. 35, 333–338 (2003).
-
Vorobeva, E. V., Krasikova, I. N. & Solov’eva, T. F. Influence of lipopolysaccharides and lipids A from some marine bacteria on spontaneous and Escherichia coli LPS-induced TNF-α release from peripheral human blood cells. Biochem. (Moscow). 71, 759–766 (2006).
-
Some effects of serum components on osmotic fragility of red. blood cells – PubMed. https://pubmed.ncbi.nlm.nih.gov/1230724/
-
Orbach, A., Zelig, O., Yedgar, S. & Barshtein, G. Biophysical and biochemical markers of red blood cell fragility. Transfus. Med. Hemother. 44, 183–187 (2017).
-
Richieri, G. V. & Mel, H. C. Temperature effects on osmotic fragility, and the erythrocyte membrane. Biochim. Biophys. Acta. 813, 41–50 (1985).
-
Utoh, J., Zajkowski-Brown, J. E. & Harasaki, H. Effects of heat on fragility and morphology of human and calf erythrocytes. J. Investigative Surg. 5, 305–313 http://dx.doi.org/10.3109/08941939209012448 (2009).
-
Tzounakas, V. L. et al. Osmotic hemolysis is a donor-specific feature of red blood cells under various storage conditions and genetic backgrounds. Transfus. (Paris). 61, 2538–2544 (2021).
-
Massaldi, H. A., Richieri, G. V. & Mel, H. C. Osmotic fragility model for red cell populations. Biophys. J. 54, 301–308 (1988).
-
Weiss, G. H. & Zajicek, G. Kinetics of red blood cells following hemolysis. J. Theor. Biol. 23, 475–491 (1969).
-
Kim, H. D., Luthra, M. G., Watts, R. P. & Stern, L. Z. Factors influencing osmotic fragility of red blood cells in Duchenne muscular dystrophy. Neurology 30, 726–731 (1980).
-
Feng, C., Fan, R., Ma, H. & Zhang, H. The impact of pressure and temperature on the quality of suspended red blood cells: an ex vivo simulation study. Transfus. Med. https://doi.org/10.1111/TME.13141 (2025).
-
Fullerton, G. D., Kanal, K. M. & Cameron, I. L. Osmotically unresponsive water fraction on proteins: Non-ideal osmotic pressure of bovine serum albumin as a function of pH and salt concentration. Cell. Biol. Int. 30, 86–92 (2006).
-
Coldman, M. F., Gent, M. & Good, W. Relationships between osmotic fragility and other species-specific variables of mammalian erythrocytes. Comp. Biochem. Physiol. 34, 759–772 (1970).
-
Li, L. et al. A microfluidic platform for osmotic fragility test of red blood cells. RSC Adv. 2, 7161–7165 (2012).
-
Anderson, P. C. & Lovrien, R. E. Human red cell hemolysis rates in the subsecond to seconds range. An analysis. Biophys. J. 20, 181–191 (1977).
-
Górnicki, A. The hemolysis kinetics of psoriatic red blood cells. Blood Cells Mol. Dis. 41, 154–157 (2008).
-
Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. (Zagreb). 25, 141 (2015).
-
Martin Bland, J., Altman, D. G., Statistical methods for & assessing agreement between two methods of clinical measurement. Lancet 327, 307–310 (1986).
-
Frey, M. E., Petersen, H. C. & Gerke, O. Nonparametric limits of agreement for small to moderate sample sizes: A simulation study. Stats (Basel). 3, 343–355 (2020).
-
Gao, J. & Liu, W. Advances in screening of thalassaemia. Clin. Chim. Acta. 534, 176–184 (2022).
-
Zgodzińska, A. & Ciepiela, O. Osmotic fragility of red blood cells – a review of diagnostic methods. Diagnostyka Laboratoryjna. 51, 229–234 (2015).
-
Deska Pagana, K., Pagana, T. J. & Noel Pagana, T. Mosby’s Diagnostic and Laboratory Test Reference. (2019).
-
Godal, H. C., Elde, A. T., Nyborg, N. & Brosstad, F. The normal range of osmotic fragility of red blood cells. Scand. J. Haematol. 25, 107–112 (1981).
-
Bland, J. M. & Altman, D. G. Agreement between methods of measurement with multiple observations per individual. J. Biopharm. Stat. 17, 571–582 (2007).
-
Wang, S., Solenov, E. I. & Yang, B. Aquaporin inhibitors. Adv. Exp. Med. Biol. 1398, 317–330 (2023).
-
Eisele, K. et al. Stimulation of erythrocyte phosphatidylserine exposure by mercury ions. Toxicol. Appl. Pharmacol. 210, 116–122 (2006).
-
Akkaya, B., Kucukal, E., Little, J. A. & Gurkan, U. A. Mercury leads to abnormal red blood cell adhesion to laminin mediated by membrane sulfatides. Biochim. Et Biophys. Acta (BBA) – Biomembr. 1861, 1162–1171 (2019).
-
Song, S. et al. Interaction of mercury ion (Hg2+) with blood and cytotoxicity Attenuation by serum albumin binding. J Hazard. Mater 412, (2021).
-
Firat, I. S. Temperature-Dependent Osmotic Fragility Dataset in Human and Chicken Red Blood Cells. (2025).
-
Kozono, D., Yasui, M., King, L. S. & Agre, P. Aquaporin water channels: atomic structure molecular dynamics Meet clinical medicine. J. Clin. Invest. 109, 1395–1399 (2002).
-
Voigtlaender, J., Heindl, B. & Becker, B. F. Transmembrane water influx via aquaporin-1 is inhibited by barbiturates and Propofol in red blood cells. Naunyn Schmiedebergs Arch. Pharmacol. 366, 209–217 (2002).
-
Hua, Y. et al. Physiological and pathological impact of AQP1 knockout in mice. Biosci. Rep. 39, 20182303 (2019).
-
De Ieso, M. L. et al. Combined pharmacological administration of AQP1 ion channel blocker AqB011 and water channel blocker Bacopaside II amplifies inhibition of colon cancer cell migration. Sci. Rep. 9, 1–17 (2019).
