A perfusable decellularized plant-based air-liquid-interface-on-a-chip for investigating inorganic dust aerosol exposure

a-perfusable-decellularized-plant-based-air-liquid-interface-on-a-chip-for-investigating-inorganic-dust-aerosol-exposure
A perfusable decellularized plant-based air-liquid-interface-on-a-chip for investigating inorganic dust aerosol exposure

References

  1. Ambient (outdoor) air pollution. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health.

  2. Park, J., Kim, H.-J., Lee, C.-H., Lee, C. H. & Lee, H. W. Impact of long-term exposure to ambient air pollution on the incidence of chronic obstructive pulmonary disease: A systematic review and meta-analysis. Environ. Res. 194, 110703 (2021).

    Google Scholar 

  3. Aghapour, M. et al. Role of air pollutants in airway epithelial barrier dysfunction in asthma and COPD. European Respiratory Rev. 31, 210112 (2022).

    Google Scholar 

  4. Wang, Q. & Liu, S. The effects and pathogenesis of PM2.5 and its components on chronic obstructive pulmonary disease. Int. J. Chron Obstruct Pulmon. Dis. 18, 493–506 (2023).

    Google Scholar 

  5. De Longueville, F., Hountondji, Y.-C., Henry, S. & Ozer, P. What do we know about effects of desert dust on air quality and human health in West Africa compared to other regions?. Sci. Total. Environ. 409, 1–8 (2010).

    Google Scholar 

  6. Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E. & Gill, T. E. Environmental Characterization of Global Sources of Atmospheric Soil Dust Identified with the Nimbus 7 Total Ozone Mapping Spectrometer (toms) Absorbing Aerosol Product. Rev. Geophys. 40, 2-1–2-31 (2002).

    Google Scholar 

  7. Slezakova, K. et al. Atmospheric Nanoparticles and Their Impacts on Public Health. in Current Topics in Public Health (IntechOpen, 2013)

  8. Buzea, C., Pacheco, I. I. & Robbie, K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2, MR17-71 (2007).

    Google Scholar 

  9. Geiser, M. & Kreyling, W. G. Deposition and biokinetics of inhaled nanoparticles. Part. Fibre Toxicol. 7, 2 (2010).

    Google Scholar 

  10. Zhou, X., Jin, W. & Ma, J. Lung inflammation perturbation by engineered nanoparticles. Front. Bioeng. Biotechnol. https://doi.org/10.3389/fbioe.2023.1199230 (2023).

    Google Scholar 

  11. Atalay-Sahar, E. et al. Novel approach methodologies in modeling complex bioaerosol exposure in asthma and allergic rhinitis under climate change. Expert Rev. Mol. Med. 27, e13 (2025).

    Google Scholar 

  12. Sengupta, A. et al. A next-generation system for smoke inhalation integrated with a breathing lung-on-chip to model human lung responses to cigarette exposure. Sci Rep 15, 18181 (2025).

    Google Scholar 

  13. Tanabe, I. & Ishikawa, S. Comprehensive characterization of human alveolar epithelial cells cultured for 28 days at the air-liquid interface. Sci Rep 15, 22995 (2025).

    Google Scholar 

  14. Kaya, B. & Yesil-Celiktas, O. Ionic liquid-based transparent membrane-coupled human lung epithelium-on-a-chip demonstrating PM0.5 pollution effect under breathing mechanostress. Bio-des. Manuf. 7, 624–636 (2024).

    Google Scholar 

  15. Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).

    Google Scholar 

  16. Benam, K. H. et al. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat. Methods 13, 151–157 (2016).

    Google Scholar 

  17. Blume, C. et al. Temporal monitoring of differentiated human airway epithelial cells using microfluidics. PLoS ONE 10, e0139872 (2015).

    Google Scholar 

  18. Silva, S., Bicker, J., Falcão, A. & Fortuna, A. Air-liquid interface (ALI) impact on different respiratory cell cultures. Eur. J. Pharm. Biopharm. 184, 62–82 (2023).

    Google Scholar 

  19. Leung, C. M. et al. A guide to the organ-on-a-chip. Nat. Rev. Methods Primers 2, 33 (2022).

    Google Scholar 

  20. Grigoryan, B. et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364, 458–464 (2019).

    Google Scholar 

  21. Murphy, A. R. & Allenby, M. C. In vitro microvascular engineering approaches and strategies for interstitial tissue integration. Acta Biomater. 171, 114–130 (2023).

    Google Scholar 

  22. Malkani, S., Prado, O. & Stevens, K. R. Sacrificial templating for accelerating clinical translation of engineered organs. ACS Biomater. Sci. Eng. 11, 1–12 (2025).

    Google Scholar 

  23. Miller, A. J. et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nat. Protoc. 14, 518–540 (2019).

    Google Scholar 

  24. Saglam-Metiner, P. et al. Organotypic lung tissue culture as a preclinical model to study host- influenza A viral infection: A case for repurposing of nafamostat mesylate. Tissue Cell 87, 102319 (2024).

    Google Scholar 

  25. Valdoz, J. C. et al. Soluble ECM promotes organotypic formation in lung alveolar model. Biomaterials 283, 121464 (2022).

    Google Scholar 

  26. McCulloh, K. A., Sperry, J. S. & Adler, F. R. Water transport in plants obeys Murray’s law. Nature 421, 939–942 (2003).

    Google Scholar 

  27. Arslan, Y. et al. Bioinspired microstructures through decellularization of plants for tissue engineering applications. Eur. Polymer J. 198, 112415 (2023).

    Google Scholar 

  28. Harris, A. F. et al. Decellularized spinach biomaterials support physiologically relevant mechanical cyclic strain and prompt a stretch-induced cellular response. ACS Appl. Bio Mater. 5, 5682–5692 (2022).

    Google Scholar 

  29. Lee, T. et al. Perfusable cellulose channels from decellularized leaf scaffolds for modeling vascular amyloidosis. Int. J. Biol. Macromol. 308, 142509 (2025).

    Google Scholar 

  30. Predeina, A. L., Prilepskii, A. Y., de Zea Bermudez, V. & Vinogradov, V. V. Bioinspired in vitro brain vasculature model for nanomedicine testing based on decellularized spinach leaves. Nano Lett. 21, 9853–9861 (2021).

    Google Scholar 

  31. Filiz, Y. et al. Decellularized plant-derived vasculature-on-a-chip interacting with breast cancer spheroids to evaluate a dual-drug therapy. Appl. Mater. Today 36, 102015 (2024).

    Google Scholar 

  32. Kurihara, D., Mizuta, Y., Nagahara, S., Sato, Y. & Higashiyama, T. Optical clearing of plant tissues for fluorescence imaging. J. Vis. Exp. https://doi.org/10.3791/63428 (2022).

    Google Scholar 

  33. Zhu, Y. et al. Current advances in the development of decellularized plant extracellular matrix. Front. Bioeng. Biotechnol. 9, 712262 (2021).

    Google Scholar 

  34. Stavolone, L. & Lionetti, V. Extracellular matrix in plants and animals: hooks and locks for viruses. Front. Microbiol. 8, 1760 (2017).

    Google Scholar 

  35. Rea, I., Giardina, P., Longobardi, S. & De Stefano, L. 6 – Protein-modified porous silicon films for biomedical applications. In: Porous Silicon for Biomedical Applications (ed. Santos, H. A.) 104–128 (Woodhead Publishing, 2014).

  36. Harris, A. F. et al. Supercritical carbon dioxide decellularization of plant material to generate 3D biocompatible scaffolds. Sci. Rep. 11, 3643 (2021).

    Google Scholar 

  37. Hardin, J. A. et al. Rapid quantification of spinach leaf cuticular wax using fourier transform infrared attenuated total reflectance spectroscopy. Trans. ASABE 56(1), 331–339 (2013).

    Google Scholar 

  38. Garrison, V. H. et al. Inhalable desert dust, urban emissions, and potentially biotoxic metals in urban Saharan-Sahelian air. Sci. Total. Environ. 500–501, 383–394 (2014).

    Google Scholar 

  39. Işık, Ü., Çevik, U., Akkoca, D. B., Oğuz, K. & Damla, N. Chemical and radiological characterizations of the desert dust coming from Northern Africa to batman (Southeastern Turkey). CSJ 43, 526–533 (2022).

    Google Scholar 

  40. Guieu, C., Loÿe-Pilot, M.-D., Ridame, C. & Thomas, C. Chemical characterization of the Saharan dust end-member: Some biogeochemical implications for the western Mediterranean Sea. J. Geophys. Res.: Atmospheres 107, ACH 5-1-ACH 5-11 (2002).

    Google Scholar 

  41. Goksel, O. et al. Comprehensive analysis of resilience of human airway epithelial barrier against short-term PM2.5 inorganic dust exposure using in vitro microfluidic chip and ex vivo human airway models. Allergy 79, 2953–2965 (2024).

    Google Scholar 

  42. Air pollution: concentrations of fine particulate matter (PM2.5), SDG 11.6.2. https://www.who.int/data/gho/data/indicators/indicator-details/GHO/concentrations-of-fine-particulate-matter-(pm2-5).

  43. Boraschi, D. et al. Nanoparticles and innate immunity: new perspectives on host defence. Semin. Immunol. 34, 33–51 (2017).

    Google Scholar 

  44. Stuart, B. O. Deposition and clearance of inhaled particles. Environ. Health Perspect 55, 369–390 (1984).

    Google Scholar 

  45. Lertkiatmongkol, P., Liao, D., Mei, H., Hu, Y. & Newman, P. J. Endothelial functions of platelet/endothelial cell adhesion molecule-1 (CD31). Curr. Opin. Hematol. 23, 253–259 (2016).

    Google Scholar 

  46. Kuo, W.-T., Odenwald, M. A., Turner, J. R. & Zuo, L. Tight junction proteins occludin and ZO-1 as regulators of epithelial proliferation and survival. Ann. N Y Acad. Sci. 1514, 21–33 (2022).

    Google Scholar 

  47. Srinivasan, B. et al. TEER measurement techniques for in vitro barrier model systems. J. Lab. Autom. 20, 107–126 (2015).

    Google Scholar 

  48. Griffith, C. K. et al. Diffusion limits of an in vitro thick prevascularized tissue. Tissue Eng. 11, 257–266 (2005).

    Google Scholar 

  49. Yaldiz, B., Saglam-Metiner, P. & Yesil-Celiktas, O. Decellularised extracellular matrix-based biomaterials for repair and regeneration of central nervous system. Expert Rev. Mol. Med. 23, e25 (2021).

    Google Scholar 

  50. Gershlak, J. R. et al. Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds. Biomaterials 125, 13–22 (2017).

    Google Scholar 

  51. Lin, T.-W. et al. Establishing Liposome-Immobilized Dexamethasone-Releasing PDMS Membrane for the Cultivation of Retinal Pigment Epithelial Cells and Suppression of Neovascularization. Int. J. Mol. Sci. 20, 241 (2019).

    Google Scholar 

  52. Dikici, S., Claeyssens, F. & MacNeil, S. Decellularised baby spinach leaves and their potential use in tissue engineering applications: Studying and promoting neovascularisation. J. Biomater. Appl. 34, 546–559 (2019).

    Google Scholar 

  53. Bai, H. et al. Application of the Tissue-Engineered Plant Scaffold as a Vascular Patch. ACS Omega 6, 11595–11601 (2021).

    Google Scholar 

  54. Mahowald, N. et al. The size distribution of desert dust aerosols and its impact on the Earth system. Aeol. Res. 15, 53–71 (2014).

    Google Scholar 

  55. Kamble, S. et al. Revisiting zeta potential, the key feature of interfacial phenomena, with applications and recent advancements. ChemistrySelect 7, e202103084 (2022).

    Google Scholar 

  56. White, B., Banerjee, S., O’Brien, S., Turro, N. J. & Herman, I. P. Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. J. Phys. Chem. C 111, 13684–13690 (2007).

    Google Scholar 

  57. Scheuvens, D., Schütz, L., Kandler, K., Ebert, M. & Weinbruch, S. Bulk composition of northern African dust and its source sediments: A compilation. Earth Sci. Rev. 116, 170–194 (2013).

    Google Scholar 

  58. Belghazdis, M. & Hachem, E.-K. Clay and clay minerals: A detailed review. Int. J. Recent Technol. Appl. Sci. (IJORTAS) 4, 54–75 (2022).

    Google Scholar 

  59. Ghio, A. J. Particle exposures and infections. Infection 42, 459–467 (2014).

    Google Scholar 

  60. Marín-Palma, D. et al. Particulate matter impairs immune system function by up-regulating inflammatory pathways and decreasing pathogen response gene expression. Sci. Rep. 13, 12773 (2023).

    Google Scholar 

  61. Akdis, C. A. The epithelial barrier hypothesis proposes a comprehensive understanding of the origins of allergic and other chronic noncommunicable diseases. J. Allergy Clin. Immunol. 149, 41–44 (2022).

    Google Scholar 

  62. Adami, G. et al. Association between long-term exposure to air pollution and immune-mediated diseases: A population-based cohort study. RMD Open 8, e002055 (2022).

    Google Scholar 

  63. Ramsperger, A. F. R. M. et al. Nano- and microplastics: a comprehensive review on their exposure routes, translocation, and fate in humans. NanoImpact 29, 100441 (2023).

    Google Scholar 

  64. Sinclair, W. E. et al. Gold nanoparticles disrupt actin organization and pulmonary endothelial barriers. Sci. Rep. 10, 13320 (2020).

    Google Scholar 

  65. Schlinkert, P. et al. The oxidative potential of differently charged silver and gold nanoparticles on three human lung epithelial cell types. J. Nanobiotechnol. 13, 1 (2015).

    Google Scholar 

  66. Stewart, C. E., Torr, E. E., Mohd Jamili, N. H., Bosquillon, C. & Sayers, I. Evaluation of differentiated human bronchial epithelial cell culture systems for asthma research. J. Allergy (Cairo) 2012, 943982 (2012).

    Google Scholar 

  67. Ghozikali, M. G. et al. Status of TNF-α and IL-6 as pro-inflammatory cytokines in exhaled breath condensate of late adolescents with asthma and healthy in the dust storm and non-dust storm conditions. Sci. Tot. Environ. 838, 155536 (2022).

    Google Scholar 

  68. Bedford, R. et al. A multi-organ, lung-derived inflammatory response following in vitro airway exposure to cigarette smoke and next-generation nicotine delivery products. Toxicol. Lett. 387, 35–49 (2023).

    Google Scholar 

  69. Lee, S.-J. et al. Asian sand dust exacerbates airway inflammation in a mouse model of asthma. Lab. Animal Res. 41, 13 (2025).

    Google Scholar 

  70. Rolski, F. & Błyszczuk, P. Complexity of TNF-α signaling in heart disease. J Clin Med 9, 3267 (2020).

    Google Scholar 

  71. Sun, Y., Koyama, Y. & Shimada, S. Inflammation from peripheral organs to the brain: How does systemic inflammation cause neuroinflammation?. Front. Aging Neurosci. 14, 903455 (2022).

    Google Scholar 

  72. Logothetis, S.-A. et al. 15-year variability of desert dust optical depth on global and regional scales. Atmos. Chem. Phys. 21, 16499–16529 (2021).

    Google Scholar 

  73. Manisalidis, I., Stavropoulou, E., Stavropoulos, A. & Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 8, 14 (2020).

    Google Scholar 

  74. Doyle, J.J. and Doyle, J.L. (1987) A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue. Phytochemical Bulletin, 19, 11–15. – References – Scientific Research Publishing. https://www.scirp.org/reference/referencespapers?referenceid=1698909.

  75. Miller, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959).

    Google Scholar 

  76. Yang, G. et al. Assessment of the characteristics and biocompatibility of gelatin sponge scaffolds prepared by various crosslinking methods. Sci. Rep. 8, 1616 (2018).

    Google Scholar 

Download references