A preclinical study of device dependent therapeutic effects of cold atmospheric plasmas on atopic dermatitis induced by DNCB

a-preclinical-study-of-device-dependent-therapeutic-effects-of-cold-atmospheric-plasmas-on-atopic-dermatitis-induced-by-dncb
A preclinical study of device dependent therapeutic effects of cold atmospheric plasmas on atopic dermatitis induced by DNCB

References

  1. Traidl, S., Werfel, T. & Traidl-Hoffmann, C. Atopic eczema: pathophysiological findings as the beginning of a new era of therapeutic options. In Allergic Diseases–From Basic Mechanisms To Comprehensive Management and Prevention 101–115 (Springer, 2021).

  2. Boguniewicz, M. & Leung, D. Y. Atopic dermatitis: a disease of altered skin barrier and immune dysregulation. Immunol. Rev. 242 (1), 233–246 (2011).

    Google Scholar 

  3. Flohr, C. & Mann, J. New approaches to the prevention of childhood atopic dermatitis. Allergy 69 (1), 56–61 (2014).

    Google Scholar 

  4. Bylund, S. et al. Prevalence and incidence of atopic dermatitis: a systematic review. Acta Dermato-venereol. 100 (12), 5765 (2020).

    Google Scholar 

  5. De Benedetto, A. et al. Tight junction defects in patients with atopic dermatitis. J. Allergy Clin. Immunol. 127 (3), 773–786 (2011).

    Google Scholar 

  6. Wu, W. et al. Sulforaphane has a therapeutic effect in an atopic dermatitis murine model and activates the Nrf2/HO–1 axis. Mol. Med. Rep. 20 (2), 1761–1771 (2019).

    Google Scholar 

  7. Meylan, P. et al. Skin colonization by Staphylococcus aureus precedes the clinical diagnosis of atopic dermatitis in infancy. J. Invest. Dermatol. 137 (12), 2497–2504 (2017).

    Google Scholar 

  8. Yoshida, T., Beck, L. A. & De Benedetto, A. Skin barrier defects in atopic dermatitis: from old Idea to new opportunity. Allergol. Int. 71 (1), 3–13 (2022).

    Google Scholar 

  9. Kawakami, T. et al. Mast cells in atopic dermatitis. Curr. Opin. Immunol. 21 (6), 666–678 (2009).

    Google Scholar 

  10. Kezic, S. et al. Filaggrin loss-of-function mutations are associated with enhanced expression of IL-1 cytokines in the stratum corneum of patients with atopic dermatitis and in a murine model of Filaggrin deficiency. J. Allergy Clin. Immunol. 129 (4), 1031–1039 (2012). e1.

    Google Scholar 

  11. Weidinger, S. & Novak, N. Atopic dermatitis. Lancet 387 (10023), 1109–1122 (2016).

    Google Scholar 

  12. Bieber, T. Atopic dermatitis. N. Engl. J. Med. 358 (14), 1483–1494 (2008).

    Google Scholar 

  13. Oyoshi, M. K. et al. Cellular and molecular mechanisms in atopic dermatitis. Adv. Immunol. 102, 135–226 (2009).

    Google Scholar 

  14. Irvine, A. D., McLean, W. I. & Leung, D. Y. Filaggrin mutations associated with skin and allergic diseases. N. Engl. J. Med. 365 (14), 1315–1327 (2011).

    Google Scholar 

  15. Palmer, C. N. et al. Common loss-of-function variants of the epidermal barrier protein Filaggrin are a major predisposing factor for atopic dermatitis. Nat. Genet. 38 (4), 441–446 (2006).

    Google Scholar 

  16. Mizutani, N. et al. Thymic stromal lymphopoietin-induced interleukin‐17 A is involved in the development of I g E‐mediated atopic dermatitis‐like skin lesions in mice. Immunology 146 (4), 568–581 (2015).

    Google Scholar 

  17. Coondoo, A. The role of cytokines in the pathomechanism of cutaneous disorders. Indian J. Dermatol. 57 (2), 90–96 (2012).

    Google Scholar 

  18. Ferrucci, S. M. et al. Emerging systemic treatments for atopic dermatitis. Dermatol. Therapy 13 (5), 1071–1081 (2023).

    Google Scholar 

  19. Friedman, A. F. G. Plasma Medicine 545 (Wiley, 2013).

  20. Laroussi, M. Plasma medicine: a brief introduction. Plasma 1 (1), 47–60 (2018).

    Google Scholar 

  21. Keidar, M. Plasma for cancer treatment. Plasma Sources Sci. Technol. 24 (3), 033001 (2015).

    Google Scholar 

  22. Isbary, G. et al. Cold atmospheric plasma devices for medical issues. Expert Rev. Med. Dev. 10 (3), 367–377 (2013).

    Google Scholar 

  23. Kong, M. G. et al. Plasma medicine: an introductory review. New J. Phys. 11 (11), 115012 (2009).

    Google Scholar 

  24. Choi, J. H. et al. The topical application of low-temperature argon plasma enhances the anti-inflammatory effect of Jaun-ointment on DNCB-induced NC/Nga mice. BMC Complement. Altern. Med. 17 (1), 1–10 (2017).

    Google Scholar 

  25. Choi, J. H. et al. Inhibition of inflammatory reactions in 2, 4-Dinitrochlorobenzene induced Nc/Nga atopic dermatitis mice by non-thermal plasma. Sci. Rep. 6 (1), 1–11 (2016).

    Google Scholar 

  26. Moon, I. J. et al. Treatment of atopic dermatitis using non-thermal atmospheric plasma in an animal model. Sci. Rep. 11 (1), 1–8 (2021).

    Google Scholar 

  27. An, H. J. et al. Therapeutic effects of bee venom and its major component, melittin, on atopic dermatitis in vivo and in vitro. Br. J. Pharmacol. 175 (23), 4310–4324 (2018).

    Google Scholar 

  28. Chan, C. C. et al. Effect of dehydroepiandrosterone on atopic dermatitis-like skin lesions induced by 1-chloro-2, 4-dinitrobenzene in mouse. J. Dermatol. Sci. 72 (2), 149–157 (2013).

    Google Scholar 

  29. Hamad, A. F., Han, J. H. & Rather, I. A. Mouse model of DNCB-induced atopic dermatitis. Bangladesh J. Pharmacol. 12, 2 (2017).

  30. Hanifin, J. et al. The eczema area and severity index (EASI): assessment of reliability in atopic dermatitis. Exp. Dermatol. 10 (1), 11–18 (2001).

    Google Scholar 

  31. Luo, D. Q. et al. Different imiquimod creams resulting in differential effects for imiquimod-induced psoriatic mouse models. Exp. Biol. Med. 241 (16), 1733–1738 (2016).

    Google Scholar 

  32. Norman, G. Likert scales, levels of measurement and the laws of statistics. Adv. Health Sci. Educ. 15 (5), 625–632 (2010).

    Google Scholar 

  33. Harpe, S. E. How to analyze likert and other rating scale data. Curr. Pharm. Teach. Learn. 7 (6), 836–850 (2015).

    Google Scholar 

  34. Bieber, T. Interleukin-13: targeting an underestimated cytokine in atopic dermatitis. Allergy 75 (1), 54–62 (2020).

    Google Scholar 

  35. Hamid, Q. et al. In vivo expression of IL-12 and IL-13 in atopic dermatitis. J. Allergy Clin. Immunol. 98 (1), 225–231 (1996).

    Google Scholar 

  36. Beck, L. A. et al. Type 2 inflammation contributes to skin barrier dysfunction in atopic dermatitis. JID Innov. 2 (5), 100131 (2022).

    Google Scholar 

  37. Park, S. J. et al. Platycodon grandiflorus alleviates DNCB-induced atopy-like dermatitis in NC/Nga mice. Indian J. Pharmacol. 44 (4), 469–474 (2012).

    Google Scholar 

  38. Jensen, P. J. et al. E-cadherin and P-cadherin have partially redundant roles in human epidermal stratification. Cell Tissue Res. 288, 307–316 (1997).

    Google Scholar 

  39. Tunggal, J. A. et al. E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions. EMBO J. 24 (6), 1146–1156 (2005).

    Google Scholar 

  40. Varricchi, G. et al. Angiogenesis and lymphangiogenesis in inflammatory skin disorders. J. Am. Acad. Dermatol. 73 (1), 144–153 (2015).

    Google Scholar 

  41. Randall, L. M. et al. Markers of angiogenesis in high-risk, early-stage cervical cancer: A gynecologic oncology group study. Gynecol. Oncol. 112 (3), 583–589 (2009).

    Google Scholar 

  42. Cheung, P. F. Y. et al. Activation of human eosinophils and epidermal keratinocytes by Th2 cytokine IL-31: implication for the Immunopathogenesis of atopic dermatitis. Int. Immunol. 22 (6), 453–467 (2010).

    Google Scholar 

  43. Liu, F. T., Goodarzi, H. & Chen, H. Y. IgE, mast cells, and eosinophils in atopic dermatitis. Clin. Rev. Allergy Immunol. 41, 298–310 (2011).

    Google Scholar 

  44. Furue, M. et al. Atopic dermatitis: immune deviation, barrier dysfunction, IgE autoreactivity and new therapies. Allergol. Int. 66 (3), 398–403 (2017).

    Google Scholar 

  45. Fischer, M. et al. Mast cell CD30 ligand is upregulated in cutaneous inflammation and mediates degranulation-independent chemokine secretion. J. Clin. Investig. 116 (10), 2748–2756 (2006).

    Google Scholar 

  46. Keith, Y. H. et al. Mast cells in type 2 skin inflammation: maintenance and function. Eur. J. Immunol. 53 (8), 2250359 (2023).

    Google Scholar 

  47. Jungersted, J. et al. Stratum corneum lipids, skin barrier function and Filaggrin mutations in patients with atopic eczema. Allergy 65 (7), 911–918 (2010).

    Google Scholar 

  48. Panther, D. J. & Jacob, S. E. The importance of acidification in atopic eczema: an underexplored avenue for treatment. J. Clin. Med. 4 (5), 970–978 (2015).

    Google Scholar 

  49. Busco, G. et al. Cold atmospheric plasma-induced acidification of tissue surface: visualization and quantification using agarose gel models. J. Phys. D. 52 (24), 24LT01 (2019).

    Google Scholar 

  50. Brisset, J. L. et al. Acidity control of plasma-chemical oxidation: applications to dye removal, urban waste abatement and microbial inactivation. Plasma Sources Sci. Technol. 20 (3), 034021 (2011).

    Google Scholar 

  51. Al-Rawaf, A. F. et al. Studying the non-thermal plasma jet characteristics and application on bacterial decontamination. J. Theor. Appl. Phys. 12 (1), 45–51 (2018).

    Google Scholar 

  52. Winter, S. et al. In vitro evaluation of the decontamination effect of cold atmospheric argon plasma on selected bacteria frequently encountered in small animal bite injuries. J. Microbiol. Methods. 169, 105728 (2020).

    Google Scholar 

  53. Mai-Prochnow, A. et al. Gram positive and gram negative bacteria differ in their sensitivity to cold plasma. Sci. Rep. 6 (1), 38610 (2016).

    Google Scholar 

  54. Lee, M. H. et al. Non-thermal plasma inhibits mast cell activation and ameliorates allergic skin inflammatory diseases in NC/Nga mice. Sci. Rep. 9 (1), 13510 (2019).

    Google Scholar 

  55. Szekanecz, Z. & Koch, A. E. Mechanisms of disease: angiogenesis in inflammatory diseases. Nat. Clin. Pract. Rheumatol. 3 (11), 635–643 (2007).

    Google Scholar 

  56. Schonthaler, H. B. et al. Systemic anti-VEGF treatment strongly reduces skin inflammation in a mouse model of psoriasis. Proc. Natl. Acad. Sci. 106 (50), 21264–21269 (2009).

    Google Scholar 

  57. Chen, H. W. et al. Immunomodulatory and anti-angiogenesis effects of excavatolide B and its derivatives in alleviating atopic dermatitis. Biomed. Pharmacother. 172, 116279 (2024).

  58. Genovese, A. et al. Angiogenesis, lymphangiogenesis and atopic dermatitis. In New Trends in Allergy and Atopic Eczema 50–60 (Karger Publishers, 2012).

  59. Zhang, Y., Matsuo, H. & Morita, E. Increased production of vascular endothelial growth factor in the lesions of atopic dermatitis. Arch. Dermatol. Res. 297 (9), 425–429 (2006).

    Google Scholar 

  60. Rerknimitr, P. et al. The etiopathogenesis of atopic dermatitis: barrier disruption, immunological derangement, and pruritus. Inflamm. Regener. 37 (1), 1–15 (2017).

    Google Scholar 

  61. Howell, M. D. et al. Mechanism of HBD-3 deficiency in atopic dermatitis. Clin. Immunol. 121 (3), 332–338 (2006).

    Google Scholar 

  62. Nakai, K. et al. Reduced expression of epidermal growth factor receptor, E-cadherin, and occludin in the skin of flaky tail mice is due to Filaggrin and Loricrin deficiencies. Am. J. Pathol. 181 (3), 969–977 (2012).

    Google Scholar 

  63. Hepburn, L. et al. The complex biology and contribution of Staphylococcus aureus in atopic dermatitis, current and future therapies. Br. J. Dermatol. 177 (1), 63–71 (2017).

    Google Scholar 

  64. Kasraie, S., Niebuhr, M. & Werfel, T. Interleukin (IL)-31 induces pro‐inflammatory cytokines in human monocytes and macrophages following stimulation with Staphylococcal exotoxins. Allergy 65 (6), 712–721 (2010).

    Google Scholar 

  65. Kato, A. et al. Distribution of IL-31 and its receptor expressing cells in skin of atopic dermatitis. J. Dermatol. Sci. 74 (3), 229–235 (2014).

    Google Scholar 

  66. Stott, B. et al. Human IL-31 is induced by IL-4 and promotes TH2-driven inflammation. J. Allergy Clin. Immunol. 132 (2), 446–454 (2013). e5.

    Google Scholar 

Download references