References
-
Traidl, S., Werfel, T. & Traidl-Hoffmann, C. Atopic eczema: pathophysiological findings as the beginning of a new era of therapeutic options. In Allergic Diseases–From Basic Mechanisms To Comprehensive Management and Prevention 101–115 (Springer, 2021).
-
Boguniewicz, M. & Leung, D. Y. Atopic dermatitis: a disease of altered skin barrier and immune dysregulation. Immunol. Rev. 242 (1), 233–246 (2011).
-
Flohr, C. & Mann, J. New approaches to the prevention of childhood atopic dermatitis. Allergy 69 (1), 56–61 (2014).
-
Bylund, S. et al. Prevalence and incidence of atopic dermatitis: a systematic review. Acta Dermato-venereol. 100 (12), 5765 (2020).
-
De Benedetto, A. et al. Tight junction defects in patients with atopic dermatitis. J. Allergy Clin. Immunol. 127 (3), 773–786 (2011).
-
Wu, W. et al. Sulforaphane has a therapeutic effect in an atopic dermatitis murine model and activates the Nrf2/HO–1 axis. Mol. Med. Rep. 20 (2), 1761–1771 (2019).
-
Meylan, P. et al. Skin colonization by Staphylococcus aureus precedes the clinical diagnosis of atopic dermatitis in infancy. J. Invest. Dermatol. 137 (12), 2497–2504 (2017).
-
Yoshida, T., Beck, L. A. & De Benedetto, A. Skin barrier defects in atopic dermatitis: from old Idea to new opportunity. Allergol. Int. 71 (1), 3–13 (2022).
-
Kawakami, T. et al. Mast cells in atopic dermatitis. Curr. Opin. Immunol. 21 (6), 666–678 (2009).
-
Kezic, S. et al. Filaggrin loss-of-function mutations are associated with enhanced expression of IL-1 cytokines in the stratum corneum of patients with atopic dermatitis and in a murine model of Filaggrin deficiency. J. Allergy Clin. Immunol. 129 (4), 1031–1039 (2012). e1.
-
Weidinger, S. & Novak, N. Atopic dermatitis. Lancet 387 (10023), 1109–1122 (2016).
-
Bieber, T. Atopic dermatitis. N. Engl. J. Med. 358 (14), 1483–1494 (2008).
-
Oyoshi, M. K. et al. Cellular and molecular mechanisms in atopic dermatitis. Adv. Immunol. 102, 135–226 (2009).
-
Irvine, A. D., McLean, W. I. & Leung, D. Y. Filaggrin mutations associated with skin and allergic diseases. N. Engl. J. Med. 365 (14), 1315–1327 (2011).
-
Palmer, C. N. et al. Common loss-of-function variants of the epidermal barrier protein Filaggrin are a major predisposing factor for atopic dermatitis. Nat. Genet. 38 (4), 441–446 (2006).
-
Mizutani, N. et al. Thymic stromal lymphopoietin-induced interleukin‐17 A is involved in the development of I g E‐mediated atopic dermatitis‐like skin lesions in mice. Immunology 146 (4), 568–581 (2015).
-
Coondoo, A. The role of cytokines in the pathomechanism of cutaneous disorders. Indian J. Dermatol. 57 (2), 90–96 (2012).
-
Ferrucci, S. M. et al. Emerging systemic treatments for atopic dermatitis. Dermatol. Therapy 13 (5), 1071–1081 (2023).
-
Friedman, A. F. G. Plasma Medicine 545 (Wiley, 2013).
-
Laroussi, M. Plasma medicine: a brief introduction. Plasma 1 (1), 47–60 (2018).
-
Keidar, M. Plasma for cancer treatment. Plasma Sources Sci. Technol. 24 (3), 033001 (2015).
-
Isbary, G. et al. Cold atmospheric plasma devices for medical issues. Expert Rev. Med. Dev. 10 (3), 367–377 (2013).
-
Kong, M. G. et al. Plasma medicine: an introductory review. New J. Phys. 11 (11), 115012 (2009).
-
Choi, J. H. et al. The topical application of low-temperature argon plasma enhances the anti-inflammatory effect of Jaun-ointment on DNCB-induced NC/Nga mice. BMC Complement. Altern. Med. 17 (1), 1–10 (2017).
-
Choi, J. H. et al. Inhibition of inflammatory reactions in 2, 4-Dinitrochlorobenzene induced Nc/Nga atopic dermatitis mice by non-thermal plasma. Sci. Rep. 6 (1), 1–11 (2016).
-
Moon, I. J. et al. Treatment of atopic dermatitis using non-thermal atmospheric plasma in an animal model. Sci. Rep. 11 (1), 1–8 (2021).
-
An, H. J. et al. Therapeutic effects of bee venom and its major component, melittin, on atopic dermatitis in vivo and in vitro. Br. J. Pharmacol. 175 (23), 4310–4324 (2018).
-
Chan, C. C. et al. Effect of dehydroepiandrosterone on atopic dermatitis-like skin lesions induced by 1-chloro-2, 4-dinitrobenzene in mouse. J. Dermatol. Sci. 72 (2), 149–157 (2013).
-
Hamad, A. F., Han, J. H. & Rather, I. A. Mouse model of DNCB-induced atopic dermatitis. Bangladesh J. Pharmacol. 12, 2 (2017).
-
Hanifin, J. et al. The eczema area and severity index (EASI): assessment of reliability in atopic dermatitis. Exp. Dermatol. 10 (1), 11–18 (2001).
-
Luo, D. Q. et al. Different imiquimod creams resulting in differential effects for imiquimod-induced psoriatic mouse models. Exp. Biol. Med. 241 (16), 1733–1738 (2016).
-
Norman, G. Likert scales, levels of measurement and the laws of statistics. Adv. Health Sci. Educ. 15 (5), 625–632 (2010).
-
Harpe, S. E. How to analyze likert and other rating scale data. Curr. Pharm. Teach. Learn. 7 (6), 836–850 (2015).
-
Bieber, T. Interleukin-13: targeting an underestimated cytokine in atopic dermatitis. Allergy 75 (1), 54–62 (2020).
-
Hamid, Q. et al. In vivo expression of IL-12 and IL-13 in atopic dermatitis. J. Allergy Clin. Immunol. 98 (1), 225–231 (1996).
-
Beck, L. A. et al. Type 2 inflammation contributes to skin barrier dysfunction in atopic dermatitis. JID Innov. 2 (5), 100131 (2022).
-
Park, S. J. et al. Platycodon grandiflorus alleviates DNCB-induced atopy-like dermatitis in NC/Nga mice. Indian J. Pharmacol. 44 (4), 469–474 (2012).
-
Jensen, P. J. et al. E-cadherin and P-cadherin have partially redundant roles in human epidermal stratification. Cell Tissue Res. 288, 307–316 (1997).
-
Tunggal, J. A. et al. E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions. EMBO J. 24 (6), 1146–1156 (2005).
-
Varricchi, G. et al. Angiogenesis and lymphangiogenesis in inflammatory skin disorders. J. Am. Acad. Dermatol. 73 (1), 144–153 (2015).
-
Randall, L. M. et al. Markers of angiogenesis in high-risk, early-stage cervical cancer: A gynecologic oncology group study. Gynecol. Oncol. 112 (3), 583–589 (2009).
-
Cheung, P. F. Y. et al. Activation of human eosinophils and epidermal keratinocytes by Th2 cytokine IL-31: implication for the Immunopathogenesis of atopic dermatitis. Int. Immunol. 22 (6), 453–467 (2010).
-
Liu, F. T., Goodarzi, H. & Chen, H. Y. IgE, mast cells, and eosinophils in atopic dermatitis. Clin. Rev. Allergy Immunol. 41, 298–310 (2011).
-
Furue, M. et al. Atopic dermatitis: immune deviation, barrier dysfunction, IgE autoreactivity and new therapies. Allergol. Int. 66 (3), 398–403 (2017).
-
Fischer, M. et al. Mast cell CD30 ligand is upregulated in cutaneous inflammation and mediates degranulation-independent chemokine secretion. J. Clin. Investig. 116 (10), 2748–2756 (2006).
-
Keith, Y. H. et al. Mast cells in type 2 skin inflammation: maintenance and function. Eur. J. Immunol. 53 (8), 2250359 (2023).
-
Jungersted, J. et al. Stratum corneum lipids, skin barrier function and Filaggrin mutations in patients with atopic eczema. Allergy 65 (7), 911–918 (2010).
-
Panther, D. J. & Jacob, S. E. The importance of acidification in atopic eczema: an underexplored avenue for treatment. J. Clin. Med. 4 (5), 970–978 (2015).
-
Busco, G. et al. Cold atmospheric plasma-induced acidification of tissue surface: visualization and quantification using agarose gel models. J. Phys. D. 52 (24), 24LT01 (2019).
-
Brisset, J. L. et al. Acidity control of plasma-chemical oxidation: applications to dye removal, urban waste abatement and microbial inactivation. Plasma Sources Sci. Technol. 20 (3), 034021 (2011).
-
Al-Rawaf, A. F. et al. Studying the non-thermal plasma jet characteristics and application on bacterial decontamination. J. Theor. Appl. Phys. 12 (1), 45–51 (2018).
-
Winter, S. et al. In vitro evaluation of the decontamination effect of cold atmospheric argon plasma on selected bacteria frequently encountered in small animal bite injuries. J. Microbiol. Methods. 169, 105728 (2020).
-
Mai-Prochnow, A. et al. Gram positive and gram negative bacteria differ in their sensitivity to cold plasma. Sci. Rep. 6 (1), 38610 (2016).
-
Lee, M. H. et al. Non-thermal plasma inhibits mast cell activation and ameliorates allergic skin inflammatory diseases in NC/Nga mice. Sci. Rep. 9 (1), 13510 (2019).
-
Szekanecz, Z. & Koch, A. E. Mechanisms of disease: angiogenesis in inflammatory diseases. Nat. Clin. Pract. Rheumatol. 3 (11), 635–643 (2007).
-
Schonthaler, H. B. et al. Systemic anti-VEGF treatment strongly reduces skin inflammation in a mouse model of psoriasis. Proc. Natl. Acad. Sci. 106 (50), 21264–21269 (2009).
-
Chen, H. W. et al. Immunomodulatory and anti-angiogenesis effects of excavatolide B and its derivatives in alleviating atopic dermatitis. Biomed. Pharmacother. 172, 116279 (2024).
-
Genovese, A. et al. Angiogenesis, lymphangiogenesis and atopic dermatitis. In New Trends in Allergy and Atopic Eczema 50–60 (Karger Publishers, 2012).
-
Zhang, Y., Matsuo, H. & Morita, E. Increased production of vascular endothelial growth factor in the lesions of atopic dermatitis. Arch. Dermatol. Res. 297 (9), 425–429 (2006).
-
Rerknimitr, P. et al. The etiopathogenesis of atopic dermatitis: barrier disruption, immunological derangement, and pruritus. Inflamm. Regener. 37 (1), 1–15 (2017).
-
Howell, M. D. et al. Mechanism of HBD-3 deficiency in atopic dermatitis. Clin. Immunol. 121 (3), 332–338 (2006).
-
Nakai, K. et al. Reduced expression of epidermal growth factor receptor, E-cadherin, and occludin in the skin of flaky tail mice is due to Filaggrin and Loricrin deficiencies. Am. J. Pathol. 181 (3), 969–977 (2012).
-
Hepburn, L. et al. The complex biology and contribution of Staphylococcus aureus in atopic dermatitis, current and future therapies. Br. J. Dermatol. 177 (1), 63–71 (2017).
-
Kasraie, S., Niebuhr, M. & Werfel, T. Interleukin (IL)-31 induces pro‐inflammatory cytokines in human monocytes and macrophages following stimulation with Staphylococcal exotoxins. Allergy 65 (6), 712–721 (2010).
-
Kato, A. et al. Distribution of IL-31 and its receptor expressing cells in skin of atopic dermatitis. J. Dermatol. Sci. 74 (3), 229–235 (2014).
-
Stott, B. et al. Human IL-31 is induced by IL-4 and promotes TH2-driven inflammation. J. Allergy Clin. Immunol. 132 (2), 446–454 (2013). e5.
