References
-
Jarvis, P. & López-Juez, E. Biogenesis and homeostasis of chloroplasts and other plastids. Nat. Rev. Mol. Cell Biol. 14, 787 (2013).
-
Johnson, M. P. Structure, regulation and assembly of the photosynthetic electron transport chain. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-025-00847-y (2025).
-
Solymosi, K. & Schoefs, B. Etioplast and etio-chloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms. Photosynth Res. 105, 143–166 (2010).
-
Armarego-Marriott, T., Sandoval-Ibanez, O. & Kowalewska, L. Beyond the darkness: recent lessons from etiolation and de-etiolation studies. J. Exp. Bot. 71, 1215–1225 (2020).
-
Long, S. P., Zhu, X. G., Naidu, S. L. & Ort, D. R. Can improvement in photosynthesis increase crop yields? Plant Cell Environ. 29, 315–330 (2006).
-
Ort, D. R. et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc. Natl. Acad. Sci. USA 112, 8529–8536 (2015).
-
Allen, J. F., de Paula, W. B., Puthiyaveetil, S. & Nield, J. A structural phylogenetic map for chloroplast photosynthesis. Trends Plant Sci. 16, 645–655 (2011).
-
Borner, T., Aleynikova, A. Y., Zubo, Y. O. & Kusnetsov, V. V. Chloroplast RNA polymerases: Role in chloroplast biogenesis. Biochim. Biophys. Acta 1847, 761–769 (2015).
-
Pfannschmidt, T. et al. Plastid RNA polymerases: orchestration of enzymes with different evolutionary origins controls chloroplast biogenesis during the plant life cycle. J. Exp. Bot. 66, 6957–6973 (2015).
-
do Prado, P. F. V. et al. Structure of the multi-subunit chloroplast RNA polymerase. Mol. Cell 84, 910–925 e915 (2024).
-
Vergara-Cruces, A. et al. Structure of the plant plastid-encoded RNA polymerase. Cell 187, 1145–1159 e1121 (2024).
-
Wang, T. et al. Architecture of the spinach plastid-encoded RNA polymerase. Nat. Commun. 15, 9838 (2024).
-
Wu, X. X. et al. Cryo-EM structures of the plant plastid-encoded RNA polymerase. Cell 187, 1127–1144 e1121 (2024).
-
Ahrens, F. M., do Prado, P. F. V., Hillen, H. S. & Pfannschmidt, T. The plastid-encoded RNA polymerase of plant chloroplasts. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2025.01.010 (2025).
-
Gilkerson, J., Perez-Ruiz, J. M., Chory, J. & Callis, J. The plastid-localized pfkB-type carbohydrate kinases FRUCTOKINASE-LIKE 1 and 2 are essential for growth and development of Arabidopsis thaliana. BMC Plant Biol. 12, 102 (2012).
-
Gao, Z. P. et al. A functional component of the transcriptionally active chromosome complex, Arabidopsis pTAC14, interacts with pTAC12/HEMERA and regulates plastid gene expression. Plant Physiol. 157, 1733–1745 (2011).
-
Pfalz, J., Liere, K., Kandlbinder, A., Dietz, K. J. & Oelmuller, R. pTAC2, -6, and -12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression. Plant Cell 18, 176–197 (2006).
-
Arsova, B. et al. Plastidial thioredoxin z interacts with two fructokinase-like proteins in a thiol-dependent manner: evidence for an essential role in chloroplast development in Arabidopsis and Nicotiana benthamiana. Plant Cell 22, 1498–1515 (2010).
-
Myouga, F. et al. The Chloroplast Function Database II: a comprehensive collection of homozygous mutants and their phenotypic/genotypic traits for nuclear-encoded chloroplast proteins. Plant Cell Physiol. 54, e2 (2013).
-
Yu, Q. B. et al. TAC7, an essential component of the plastid transcriptionally active chromosome complex, interacts with FLN1, TAC10, TAC12 and TAC14 to regulate chloroplast gene expression in Arabidopsis thaliana. Physiol. Plant 148, 408–421 (2013).
-
Chang, S. H. et al. pTAC10, a key subunit of plastid-encoded RNA polymerase, promotes chloroplast development. Plant Physiol. 174, 435–449 (2017).
-
Pfalz, J. & Pfannschmidt, T. Essential nucleoid proteins in early chloroplast development. Trends Plant Sci. 18, 186–194 (2013).
-
Liebers, M. et al. Nucleo-plastidic PAP8/pTAC6 couples chloroplast formation with photomorphogenesis. EMBO J. 39, e104941 (2020).
-
Chen, M. et al. Arabidopsis HEMERA/pTAC12 initiates photomorphogenesis by phytochromes. Cell 141, 1230–1240 (2010).
-
Omelina, E. S. et al. Optogenetic and chemical induction systems for regulation of transgene expression in plants: use in basic and applied research. Int. J. Mol. Sci. 23, https://doi.org/10.3390/ijms23031737 (2022).
-
Larsen, B. et al. Highlighter: an optogenetic system for high-resolution gene expression control in plants. PLoS Biol. 21, e3002303 (2023).
-
Christie, J. M. & Zurbriggen, M. D. Optogenetics in plants. N. Phytol. 229, 3108–3115 (2021).
-
Konrad, K. R., Gao, S., Zurbriggen, M. D. & Nagel, G. Optogenetic methods in plant biology. Annu Rev. Plant Biol. 74, 313–339 (2023).
-
Ochoa-Fernandez, R. et al. Optogenetic control of gene expression in plants in the presence of ambient white light. Nat. Methods 17, 717–725 (2020).
-
Hartmann, U. et al. Identification of UV/blue light-response elements in the Arabidopsis thaliana chalcone synthase promoter using a homologous protoplast transient expression system. Plant Mol. Biol. 36, 741–754 (1998).
-
Grubler, B. et al. Light and plastid signals regulate different sets of genes in the albino mutant pap7-1. Plant Physiol. https://doi.org/10.1104/pp.17.00982 (2017).
-
Diaz, M. G. et al. Redox regulation of PEP activity during seedling establishment in Arabidopsis thaliana. Nat. Commun. 9, 50 (2018).
-
Pfannschmidt, T. et al. Potential regulation of gene expression in photosynthetic cells by redox and energy state: approaches towards better understanding. Ann. Bot. 103, 599–607 (2009).
-
Di Silvestre, D. et al. A holistic investigation of Arabidopsis proteomes altered in chloroplast biogenesis and retrograde signalling identifies PsbO as a key regulator of chloroplast quality control. Plant Cell Environ. 48, 6373–6396 (2025).
-
Colombo, M., Tadini, L., Peracchio, C., Ferrari, R. & Pesaresi, P. GUN1, a jack-of-all-trades in chloroplast protein homeostasis and signaling. Front Plant Sci. 7, 1427 (2016).
-
Allison, L. A., Simon, L. D. & Maliga, P. Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. EMBO J. 15, 2802–2809 (1996).
-
Charuvi, D. et al. Gain and loss of photosynthetic membranes during plastid differentiation in the shoot apex of Arabidopsis. Plant Cell 24, 1143–1157 (2012).
-
Gugel, I. L. & Soll, J. Chloroplast differentiation in the growing leaves of Arabidopsis thaliana. Protoplasma 254, 1857–1866 (2017).
-
Loudya, N. et al. Cellular and transcriptomic analyses reveal two-staged chloroplast biogenesis underpinning photosynthesis build-up in the wheat leaf. Genome Biol. 22, 151 (2021).
-
Hajdukiewicz, P. T., Allison, L. A. & Maliga, P. The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J. 16, 4041–4048 (1997).
-
Zhelyazkova, P. et al. The primary transcriptome of barley chloroplasts: numerous noncoding RNAs and the dominating role of the plastid-encoded RNA polymerase. Plant Cell 24, 123–136 (2012).
-
Gray, J. C., Sullivan, J. A., Wang, J. H., Jerome, C. A. & MacLean, D. Coordination of plastid and nuclear gene expression. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 144–135 (2003).
-
Loudya, N., Barkan, A. & Lopez-Juez, E. Plastid retrograde signaling: a developmental perspective. Plant Cell 36, 3903–3913 (2024).
-
Liebers, M. et al. Biogenic signals from plastids and their role in chloroplast development. J. Exp. Bot. https://doi.org/10.1093/jxb/erac344 (2022).
-
Nevarez, P. A. et al. Mechanism of dual targeting of the phytochrome signaling component HEMERA/pTAC12 to plastids and the nucleus. Plant Physiol. 173, 1953–1966 (2017).
-
Chambon, L. et al. PAP8/pTAC6 is part of a nuclear protein complex and displays RNA recognition motifs of viral origin. Int. J. Mol. Sci. 23, https://doi.org/10.3390/ijms23063059 (2022).
-
Yoo, C. Y., Han, S. & Chen, M. Nucleus-to-plastid phytochrome signalling in controlling chloroplast biogenesis. Ann. Plant Rev. 3, 251–280 (2020).
-
Frangedakis, E. et al. MYB-related transcription factors control chloroplast biogenesis. Cell 187, 4859–4876 e4822 (2024).
-
Waters, M. T. et al. GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis. Plant Cell 21, 1109–1128 (2009).
-
Grubler, B., Cozzi, C. & Pfannschmidt, T. A core module of nuclear genes regulated by biogenic retrograde signals from plastids. Plants (Basel) 10, https://doi.org/10.3390/plants10020296 (2021).
-
Schiff, J. A., Zeldin, M. H. & Rubman, J. Chlorophyll formation and photosynthetic competence in Euglena during light-induced chloroplast development in the presence of 3,(3,4-dichlorophenyl) 1,1-dimethyl urea (DCMU). Plant Physiol. 42, 1716–1725 (1967).
-
Collombat, J. et al. Arabidopsis conditional photosynthesis mutants abc1k1 and var2 accumulate partially processed thylakoid preproteins and are defective in chloroplast biogenesis. Commun. Biol. 8, 111 (2025).
-
Pfannschmidt, T., Nilsson, A., Tullberg, A., Link, G. & Allen, J. F. Direct transcriptional control of the chloroplast genes psbA and psaAB adjusts photosynthesis to light energy distribution in plants. IUBMB Life 48, 271–276 (1999).
-
Cackett, L., Luginbuehl, L. H., Schreier, T. B., Lopez-Juez, E. & Hibberd, J. M. Chloroplast development in green plant tissues: the interplay between light, hormone, and transcriptional regulation. N. Phytol. 233, 2000–2016 (2022).
-
Shikata, H. & Denninger, P. Plant optogenetics: applications and perspectives. Curr. Opin. Plant Biol. 68, 102256 (2022).
-
Deguchi, T. et al. Infrared laser-mediated local gene induction in medaka, zebrafish and Arabidopsis thaliana. Dev. Growth Differ. 51, 769–775 (2009).
-
Weber, E., Engler, C., Gruetzner, R., Werner, S. & Marillonnet, S. A modular cloning system for standardized assembly of multigene constructs. PLoS ONE 6, e16765 (2011).
-
Chiasson, D. et al. A unified multi-kingdom golden gate cloning platform. Sci. Rep. 9, 10131 (2019).
-
Edwards, K., Johnstone, C. & Thompson, C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 19, 1349 (1991).
-
Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).
-
Sumanta, N., Haque, C. I., Nishika, J. & Suprakash, R. Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res. J. Chem. Sci. 4, 63–69 (2014).
-
Pfalz, J. et al. ZmpTAC12 binds single-stranded nucleic acids and is essential for accumulation of the plastid-encoded polymerase complex in maize. N. Phytol. 206, 1024–1037 (2015).
-
Hwang, Y. et al. Anterograde signaling controls plastid transcription via sigma factors separately from nuclear photosynthesis genes. Nat. Commun. 13, 7440 (2022).
