A red/blue optoswitch for temporal control of chloroplast transcription and biogenesis in Arabidopsis

a-red/blue-optoswitch-for-temporal-control-of-chloroplast-transcription-and-biogenesis-in-arabidopsis
A red/blue optoswitch for temporal control of chloroplast transcription and biogenesis in Arabidopsis

References

  1. Jarvis, P. & López-Juez, E. Biogenesis and homeostasis of chloroplasts and other plastids. Nat. Rev. Mol. Cell Biol. 14, 787 (2013).

    Google Scholar 

  2. Johnson, M. P. Structure, regulation and assembly of the photosynthetic electron transport chain. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-025-00847-y (2025).

  3. Solymosi, K. & Schoefs, B. Etioplast and etio-chloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms. Photosynth Res. 105, 143–166 (2010).

    Google Scholar 

  4. Armarego-Marriott, T., Sandoval-Ibanez, O. & Kowalewska, L. Beyond the darkness: recent lessons from etiolation and de-etiolation studies. J. Exp. Bot. 71, 1215–1225 (2020).

    Google Scholar 

  5. Long, S. P., Zhu, X. G., Naidu, S. L. & Ort, D. R. Can improvement in photosynthesis increase crop yields? Plant Cell Environ. 29, 315–330 (2006).

    Google Scholar 

  6. Ort, D. R. et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc. Natl. Acad. Sci. USA 112, 8529–8536 (2015).

    Google Scholar 

  7. Allen, J. F., de Paula, W. B., Puthiyaveetil, S. & Nield, J. A structural phylogenetic map for chloroplast photosynthesis. Trends Plant Sci. 16, 645–655 (2011).

    Google Scholar 

  8. Borner, T., Aleynikova, A. Y., Zubo, Y. O. & Kusnetsov, V. V. Chloroplast RNA polymerases: Role in chloroplast biogenesis. Biochim. Biophys. Acta 1847, 761–769 (2015).

    Google Scholar 

  9. Pfannschmidt, T. et al. Plastid RNA polymerases: orchestration of enzymes with different evolutionary origins controls chloroplast biogenesis during the plant life cycle. J. Exp. Bot. 66, 6957–6973 (2015).

    Google Scholar 

  10. do Prado, P. F. V. et al. Structure of the multi-subunit chloroplast RNA polymerase. Mol. Cell 84, 910–925 e915 (2024).

    Google Scholar 

  11. Vergara-Cruces, A. et al. Structure of the plant plastid-encoded RNA polymerase. Cell 187, 1145–1159 e1121 (2024).

    Google Scholar 

  12. Wang, T. et al. Architecture of the spinach plastid-encoded RNA polymerase. Nat. Commun. 15, 9838 (2024).

    Google Scholar 

  13. Wu, X. X. et al. Cryo-EM structures of the plant plastid-encoded RNA polymerase. Cell 187, 1127–1144 e1121 (2024).

    Google Scholar 

  14. Ahrens, F. M., do Prado, P. F. V., Hillen, H. S. & Pfannschmidt, T. The plastid-encoded RNA polymerase of plant chloroplasts. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2025.01.010 (2025).

  15. Gilkerson, J., Perez-Ruiz, J. M., Chory, J. & Callis, J. The plastid-localized pfkB-type carbohydrate kinases FRUCTOKINASE-LIKE 1 and 2 are essential for growth and development of Arabidopsis thaliana. BMC Plant Biol. 12, 102 (2012).

    Google Scholar 

  16. Gao, Z. P. et al. A functional component of the transcriptionally active chromosome complex, Arabidopsis pTAC14, interacts with pTAC12/HEMERA and regulates plastid gene expression. Plant Physiol. 157, 1733–1745 (2011).

    Google Scholar 

  17. Pfalz, J., Liere, K., Kandlbinder, A., Dietz, K. J. & Oelmuller, R. pTAC2, -6, and -12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression. Plant Cell 18, 176–197 (2006).

    Google Scholar 

  18. Arsova, B. et al. Plastidial thioredoxin z interacts with two fructokinase-like proteins in a thiol-dependent manner: evidence for an essential role in chloroplast development in Arabidopsis and Nicotiana benthamiana. Plant Cell 22, 1498–1515 (2010).

    Google Scholar 

  19. Myouga, F. et al. The Chloroplast Function Database II: a comprehensive collection of homozygous mutants and their phenotypic/genotypic traits for nuclear-encoded chloroplast proteins. Plant Cell Physiol. 54, e2 (2013).

    Google Scholar 

  20. Yu, Q. B. et al. TAC7, an essential component of the plastid transcriptionally active chromosome complex, interacts with FLN1, TAC10, TAC12 and TAC14 to regulate chloroplast gene expression in Arabidopsis thaliana. Physiol. Plant 148, 408–421 (2013).

    Google Scholar 

  21. Chang, S. H. et al. pTAC10, a key subunit of plastid-encoded RNA polymerase, promotes chloroplast development. Plant Physiol. 174, 435–449 (2017).

    Google Scholar 

  22. Pfalz, J. & Pfannschmidt, T. Essential nucleoid proteins in early chloroplast development. Trends Plant Sci. 18, 186–194 (2013).

    Google Scholar 

  23. Liebers, M. et al. Nucleo-plastidic PAP8/pTAC6 couples chloroplast formation with photomorphogenesis. EMBO J. 39, e104941 (2020).

    Google Scholar 

  24. Chen, M. et al. Arabidopsis HEMERA/pTAC12 initiates photomorphogenesis by phytochromes. Cell 141, 1230–1240 (2010).

    Google Scholar 

  25. Omelina, E. S. et al. Optogenetic and chemical induction systems for regulation of transgene expression in plants: use in basic and applied research. Int. J. Mol. Sci. 23, https://doi.org/10.3390/ijms23031737 (2022).

  26. Larsen, B. et al. Highlighter: an optogenetic system for high-resolution gene expression control in plants. PLoS Biol. 21, e3002303 (2023).

    Google Scholar 

  27. Christie, J. M. & Zurbriggen, M. D. Optogenetics in plants. N. Phytol. 229, 3108–3115 (2021).

    Google Scholar 

  28. Konrad, K. R., Gao, S., Zurbriggen, M. D. & Nagel, G. Optogenetic methods in plant biology. Annu Rev. Plant Biol. 74, 313–339 (2023).

    Google Scholar 

  29. Ochoa-Fernandez, R. et al. Optogenetic control of gene expression in plants in the presence of ambient white light. Nat. Methods 17, 717–725 (2020).

    Google Scholar 

  30. Hartmann, U. et al. Identification of UV/blue light-response elements in the Arabidopsis thaliana chalcone synthase promoter using a homologous protoplast transient expression system. Plant Mol. Biol. 36, 741–754 (1998).

    Google Scholar 

  31. Grubler, B. et al. Light and plastid signals regulate different sets of genes in the albino mutant pap7-1. Plant Physiol. https://doi.org/10.1104/pp.17.00982 (2017).

  32. Diaz, M. G. et al. Redox regulation of PEP activity during seedling establishment in Arabidopsis thaliana. Nat. Commun. 9, 50 (2018).

    Google Scholar 

  33. Pfannschmidt, T. et al. Potential regulation of gene expression in photosynthetic cells by redox and energy state: approaches towards better understanding. Ann. Bot. 103, 599–607 (2009).

    Google Scholar 

  34. Di Silvestre, D. et al. A holistic investigation of Arabidopsis proteomes altered in chloroplast biogenesis and retrograde signalling identifies PsbO as a key regulator of chloroplast quality control. Plant Cell Environ. 48, 6373–6396 (2025).

    Google Scholar 

  35. Colombo, M., Tadini, L., Peracchio, C., Ferrari, R. & Pesaresi, P. GUN1, a jack-of-all-trades in chloroplast protein homeostasis and signaling. Front Plant Sci. 7, 1427 (2016).

    Google Scholar 

  36. Allison, L. A., Simon, L. D. & Maliga, P. Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. EMBO J. 15, 2802–2809 (1996).

    Google Scholar 

  37. Charuvi, D. et al. Gain and loss of photosynthetic membranes during plastid differentiation in the shoot apex of Arabidopsis. Plant Cell 24, 1143–1157 (2012).

    Google Scholar 

  38. Gugel, I. L. & Soll, J. Chloroplast differentiation in the growing leaves of Arabidopsis thaliana. Protoplasma 254, 1857–1866 (2017).

    Google Scholar 

  39. Loudya, N. et al. Cellular and transcriptomic analyses reveal two-staged chloroplast biogenesis underpinning photosynthesis build-up in the wheat leaf. Genome Biol. 22, 151 (2021).

    Google Scholar 

  40. Hajdukiewicz, P. T., Allison, L. A. & Maliga, P. The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J. 16, 4041–4048 (1997).

    Google Scholar 

  41. Zhelyazkova, P. et al. The primary transcriptome of barley chloroplasts: numerous noncoding RNAs and the dominating role of the plastid-encoded RNA polymerase. Plant Cell 24, 123–136 (2012).

    Google Scholar 

  42. Gray, J. C., Sullivan, J. A., Wang, J. H., Jerome, C. A. & MacLean, D. Coordination of plastid and nuclear gene expression. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 144–135 (2003).

    Google Scholar 

  43. Loudya, N., Barkan, A. & Lopez-Juez, E. Plastid retrograde signaling: a developmental perspective. Plant Cell 36, 3903–3913 (2024).

    Google Scholar 

  44. Liebers, M. et al. Biogenic signals from plastids and their role in chloroplast development. J. Exp. Bot. https://doi.org/10.1093/jxb/erac344 (2022).

  45. Nevarez, P. A. et al. Mechanism of dual targeting of the phytochrome signaling component HEMERA/pTAC12 to plastids and the nucleus. Plant Physiol. 173, 1953–1966 (2017).

    Google Scholar 

  46. Chambon, L. et al. PAP8/pTAC6 is part of a nuclear protein complex and displays RNA recognition motifs of viral origin. Int. J. Mol. Sci. 23, https://doi.org/10.3390/ijms23063059 (2022).

  47. Yoo, C. Y., Han, S. & Chen, M. Nucleus-to-plastid phytochrome signalling in controlling chloroplast biogenesis. Ann. Plant Rev. 3, 251–280 (2020).

    Google Scholar 

  48. Frangedakis, E. et al. MYB-related transcription factors control chloroplast biogenesis. Cell 187, 4859–4876 e4822 (2024).

    Google Scholar 

  49. Waters, M. T. et al. GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis. Plant Cell 21, 1109–1128 (2009).

    Google Scholar 

  50. Grubler, B., Cozzi, C. & Pfannschmidt, T. A core module of nuclear genes regulated by biogenic retrograde signals from plastids. Plants (Basel) 10, https://doi.org/10.3390/plants10020296 (2021).

  51. Schiff, J. A., Zeldin, M. H. & Rubman, J. Chlorophyll formation and photosynthetic competence in Euglena during light-induced chloroplast development in the presence of 3,(3,4-dichlorophenyl) 1,1-dimethyl urea (DCMU). Plant Physiol. 42, 1716–1725 (1967).

    Google Scholar 

  52. Collombat, J. et al. Arabidopsis conditional photosynthesis mutants abc1k1 and var2 accumulate partially processed thylakoid preproteins and are defective in chloroplast biogenesis. Commun. Biol. 8, 111 (2025).

    Google Scholar 

  53. Pfannschmidt, T., Nilsson, A., Tullberg, A., Link, G. & Allen, J. F. Direct transcriptional control of the chloroplast genes psbA and psaAB adjusts photosynthesis to light energy distribution in plants. IUBMB Life 48, 271–276 (1999).

    Google Scholar 

  54. Cackett, L., Luginbuehl, L. H., Schreier, T. B., Lopez-Juez, E. & Hibberd, J. M. Chloroplast development in green plant tissues: the interplay between light, hormone, and transcriptional regulation. N. Phytol. 233, 2000–2016 (2022).

    Google Scholar 

  55. Shikata, H. & Denninger, P. Plant optogenetics: applications and perspectives. Curr. Opin. Plant Biol. 68, 102256 (2022).

    Google Scholar 

  56. Deguchi, T. et al. Infrared laser-mediated local gene induction in medaka, zebrafish and Arabidopsis thaliana. Dev. Growth Differ. 51, 769–775 (2009).

    Google Scholar 

  57. Weber, E., Engler, C., Gruetzner, R., Werner, S. & Marillonnet, S. A modular cloning system for standardized assembly of multigene constructs. PLoS ONE 6, e16765 (2011).

    Google Scholar 

  58. Chiasson, D. et al. A unified multi-kingdom golden gate cloning platform. Sci. Rep. 9, 10131 (2019).

    Google Scholar 

  59. Edwards, K., Johnstone, C. & Thompson, C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 19, 1349 (1991).

    Google Scholar 

  60. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    Google Scholar 

  61. Sumanta, N., Haque, C. I., Nishika, J. & Suprakash, R. Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res. J. Chem. Sci. 4, 63–69 (2014).

    Google Scholar 

  62. Pfalz, J. et al. ZmpTAC12 binds single-stranded nucleic acids and is essential for accumulation of the plastid-encoded polymerase complex in maize. N. Phytol. 206, 1024–1037 (2015).

    Google Scholar 

  63. Hwang, Y. et al. Anterograde signaling controls plastid transcription via sigma factors separately from nuclear photosynthesis genes. Nat. Commun. 13, 7440 (2022).

    Google Scholar 

Download references