A roadmap for next-generation nanomotors

a-roadmap-for-next-generation-nanomotors
A roadmap for next-generation nanomotors

References

  1. Paxton, W. F. et al. Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126, 13424–13431 (2004). A landmark study that introduced chemically powered nanomotors, launching the field of synthetic nanomotor research.

    CAS  Google Scholar 

  2. Fournier-Bidoz, S., Arsenault, A. C., Manners, I. & Ozin, G. A. Synthetic self-propelled nanorotors. Chem. Commun. 41, 441–443 (2005).

    Google Scholar 

  3. Yesin, K. B., Vollmers, K. & Nelson, B. J. Analysis and design of wireless magnetically guided microrobots in body fluids. Proc. IEEE Int. Conf. Robot. Autom. 2, 1333–1338 (2004).

    Google Scholar 

  4. Yesin, K. B., Vollmers, K. & Nelson, B. J. in Experimental Robotics IX. Springer Tracts in Advanced Robotics Vol. 21 (eds Ang, M. H. & Khatib, O.) 321–330 (Springer, 2006).

  5. Golestanian, R., Liverpool, T. B. & Ajdari, A. Propulsion of a molecular machine by asymmetric distribution of reaction products. Phys. Rev. Lett. 94, 220801 (2005). This research article provides the foundational theoretical framework for self-diffusiophoresis as a propulsion mechanism for nanomotors.

    Google Scholar 

  6. Howse, J. R. et al. Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99, 048102 (2007).

    Google Scholar 

  7. Solovev, A. A., Mei, Y., Ureña, E. B., Huang, G. & Schmidt, O. G. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 5, 1688–1692 (2009).

    CAS  Google Scholar 

  8. Ibele, M., Mallouk, T. E. & Sen, A. Schooling behavior of light-powered autonomous micromotors in water. Angew. Chem. Int. Ed. 121, 3358–3362 (2009).

    Google Scholar 

  9. Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J. & Chaikin, P. M. Living crystals of light-activated colloidal surfers. Science 339, 933–936 (2013). An innovative research article highlighting light-powered active particles that form dynamic biomimetic self-assembled structures.

    Google Scholar 

  10. Dai, B. et al. Programmable artificial phototactic microswimmer. Nat. Nanotechnol. 11, 1087–1092 (2016). This work demonstrated phototactic behaviour in a group of synthetic microswimmers, mimicking the collective phototactic behaviour of green algae.

    CAS  Google Scholar 

  11. Yesin, K. B., Vollmers, K. & Nelson, B. J. Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields. Int. J. Robot. Res. 25, 527–536 (2006).

    Google Scholar 

  12. Bell, D. J., Leutenegger, S., Hammar, K. M., Dong, L. X. & Nelson, B. J. Flagella-like propulsion for microrobots using a nanocoil and a rotating electromagnetic field. Proc. IEEE Int. Conf. Robot. Autom. 24, 1128–1133 (2007).

    Google Scholar 

  13. Ghosh, A. & Fischer, P. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett. 9, 2243–2245 (2009). A groundbreaking research article that demonstrated precise propulsion and control of magnetic nanomotors in fluidic environments.

    CAS  Google Scholar 

  14. Fan, D. et al. Subcellular-resolution delivery of a cytokine through precisely manipulated nanowires. Nat. Nanotechnol. 5, 545–551 (2010).

    CAS  Google Scholar 

  15. Kim, K., Xu, X., Guo, J. & Fan, D. L. Ultrahigh-speed rotating nanoelectromechanical system devices assembled from nanoscale building blocks. Nat. Commun. 5, 3632 (2014).

    Google Scholar 

  16. Wang, W., Castro, L. A., Hoyos, M. & Mallouk, T. E. Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 6, 6122–6132 (2012).

    CAS  Google Scholar 

  17. Wang, W. et al. Acoustic propulsion of nanorod motors inside living cells. Angew. Chem. Int. Ed. 53, 3201–3204 (2014). The demonstration of acoustic propulsion of nanorods inside living cells.

    CAS  Google Scholar 

  18. Ren, L. et al. 3D steerable, acoustically powered microswimmers for single-particle manipulation. Sci. Adv. 5, eaax3084 (2019).

    CAS  Google Scholar 

  19. Xu, T. et al. Reversible swarming and separation of self-propelled chemically powered nanomotors under acoustic fields. J. Am. Chem. Soc. 137, 2163–2166 (2015).

    CAS  Google Scholar 

  20. Feng, J., Yuan, J. & Cho, S. K. Micropropulsion by an acoustic bubble for navigating microfluidic spaces. Lab Chip 15, 1554–1562 (2015).

    CAS  Google Scholar 

  21. Najafi, A. & Golestanian, R. Simple swimmer at low Reynolds number: three linked spheres. Phys. Rev. E 69, 062901–062904 (2004).

    Google Scholar 

  22. Dreyfus, R. et al. Microscopic artificial swimmers. Nature 437, 862–865 (2005).

    CAS  Google Scholar 

  23. Hong, Y., Blackman, N. M. K., Kopp, N. D., Sen, A. & Velegol, D. Chemotaxis of nonbiological colloidal rods. Phys. Rev. Lett. 99, 178103–178106 (2007).

    Google Scholar 

  24. Dey, K. K. et al. Chemotactic separation of enzymes. ACS Nano 8, 11941–11949 (2014).

    CAS  Google Scholar 

  25. Baraban, L., Harazim, S. M., Sanchez, S. & Schmidt, O. G. Chemotactic behavior of catalytic motors in microfluidic channels. Angew. Chem. Int. Ed. 52, 5552–5556 (2013).

    CAS  Google Scholar 

  26. Peng, F., Tu, Y., Van Hest, J. C. M. & Wilson, D. A. Self-guided supramolecular cargo-loaded nanomotors with chemotactic behavior towards cells. Angew. Chem. Int. Ed. 54, 11662–11665 (2015).

    CAS  Google Scholar 

  27. Kagan, D., Balasubramanian, S. & Wang, J. Chemically triggered swarming of gold microparticles. Angew. Chem. Int. Ed. 123, 523–526 (2011).

    Google Scholar 

  28. Wang, W., Duan, W., Sen, A. & Mallouk, T. E. Catalytically powered dynamic assembly of rod-shaped nanomotors and passive tracer particles. Proc. Natl Acad. Sci. USA 110, 17744–17749 (2013).

    CAS  Google Scholar 

  29. Solovev, A. A., Sanchez, S. & Schmidt, O. G. Collective behaviour of self-propelled catalytic micromotors. Nanoscale 5, 1284–1293 (2013).

    CAS  Google Scholar 

  30. Yu, J. et al. Active generation and magnetic actuation of microrobotic swarms in bio-fluids. Nat. Commun. 10, 5631 (2019).

    CAS  Google Scholar 

  31. Xu, D. et al. Enzyme-powered liquid metal nanobots endowed with multiple biomedical functions. ACS Nano 15, 11543–11554 (2021).

    CAS  Google Scholar 

  32. Altemose, A. et al. Chemically controlled spatiotemporal oscillations of colloidal assemblies. Angew. Chem. Int. Ed. 56, 7817–7821 (2017).

    CAS  Google Scholar 

  33. Singh, D. P., Choudhury, U., Fischer, P. & Mark, A. G. Non-equilibrium assembly of light-activated colloidal mixtures. Adv. Mater. 29, 1701328 (2017).

    Google Scholar 

  34. Walker, D., Käsdorf, B. T., Jeong, H. H., Lieleg, O. & Fischer, P. Enzymatically active biomimetic micropropellers for the penetration of mucin gels. Sci. Adv. 1, e1500501 (2015).

    Google Scholar 

  35. Ramos-Docampo, M. A. et al. Microswimmers with heat delivery capacity for 3D cell spheroid penetration. ACS Nano 13, 12192–12205 (2019).

    CAS  Google Scholar 

  36. Gardi, G., Ceron, S., Wang, W., Petersen, K. & Sitti, M. Microrobot collectives with reconfigurable morphologies, behaviors, and functions. Nat. Commun. 13, 2239 (2022).

    CAS  Google Scholar 

  37. Chen, S. et al. Collective buoyancy-driven dynamics in swarming enzymatic nanomotors. Nat. Commun. 15, 9315 (2024).

    CAS  Google Scholar 

  38. Ruiz-González, N. et al. Swarms of enzyme-powered nanomotors enhance the diffusion of macromolecules in viscous media. Small 20, 2309387–2309403 (2024).

    Google Scholar 

  39. Sun, M. et al. Individual and collective manipulation of multifunctional bimodal droplets in three dimensions. Sci. Adv. 10, eadp1439 (2024).

    CAS  Google Scholar 

  40. Patino, T. et al. Self-sensing enzyme-powered micromotors equipped with pH-responsive DNA nanoswitches. Nano Lett. 19, 3440–3447 (2019).

    CAS  Google Scholar 

  41. Liu, X. et al. Urease-powered micromotors with spatially selective distribution of enzymes for capturing and sensing exosomes. ACS Nano 17, 24343–24354 (2023).

    CAS  Google Scholar 

  42. Yuan, K., López, M. Á., Jurado-Sánchez, B. & Escarpa, A. Janus micromotors coated with 2D nanomaterials as dynamic interfaces for (bio)-sensing. ACS Appl. Mater. Interfaces 12, 46588–46597 (2020).

    CAS  Google Scholar 

  43. Li, H. et al. Precise electrokinetic position and three-dimensional orientation control of a nanowire bioprobe in solution. Nat. Nanotechnol. 18, 1213–1221 (2023).

    CAS  Google Scholar 

  44. Esteban-Fernández De Ávila, B. et al. Acoustically propelled nanomotors for intracellular siRNA delivery. ACS Nano 10, 4997–5005 (2016).

    Google Scholar 

  45. Tu, Y. et al. Biodegradable hybrid stomatocyte nanomotors for drug delivery. ACS Nano 11, 1957–1963 (2017).

    CAS  Google Scholar 

  46. Xu, H., Medina-Sánchez, M., Maitz, M. F., Werner, C. & Schmidt, O. G. Sperm micromotors for cargo delivery through flowing blood. ACS Nano 14, 2982–2993 (2020).

    CAS  Google Scholar 

  47. Hortelão, A. C., Patiño, T., Perez-Jiménez, A., Blanco, À. & Sánchez, S. Enzyme-powered nanobots enhance anticancer drug delivery. Adv. Funct. Mater. 28, 1705086 (2018).

    Google Scholar 

  48. Ma, X., Hahn, K. & Sanchez, S. Catalytic mesoporous Janus nanomotors for active cargo delivery. J. Am. Chem. Soc. 137, 4976–4979 (2015).

    CAS  Google Scholar 

  49. Solovev, A. A., Sanchez, S., Pumera, M., Mei, Y. F. & Schmidt, O. C. Magnetic control of tubular catalytic microbots for the transport, assembly, and delivery of micro-objects. Adv. Funct. Mater. 20, 2430–2435 (2010).

    CAS  Google Scholar 

  50. Wang, Q. et al. Ultrasound Doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery. Sci. Adv. 7, eabe5914 (2021).

    CAS  Google Scholar 

  51. Ye, Z. et al. Supramolecular modular assembly of imaging-trackable enzymatic nanomotors. Angew. Chem. Int. Ed. 63, e202401209 (2024).

    CAS  Google Scholar 

  52. Zheng, S. et al. Biocompatible nanomotors as active diagnostic imaging agents for enhanced magnetic resonance imaging of tumor tissues in vivo. Adv. Funct. Mater. 31, 2100936 (2021).

    CAS  Google Scholar 

  53. Vilela, D. et al. Medical imaging for the tracking of micromotors. ACS Nano 12, 1220–1227 (2018).

    CAS  Google Scholar 

  54. Hortelao, A. C. et al. Swarming behavior and in vivo monitoring of enzymatic nanomotors within the bladder. Sci. Robot. 6, eabd2823 (2021).

    Google Scholar 

  55. Wu, Z. et al. A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Sci. Robot. 4, eaax0613 (2019).

    Google Scholar 

  56. Simó, C. et al. Urease-powered nanobots for radionuclide bladder cancer therapy. Nat. Nanotechnol. 19, 554–564 (2024). The therapeutic use of enzyme-powered nanomotors with radionuclide payloads in vivo, marking a translational milestone.

    Google Scholar 

  57. Chen, S. et al. Dual-source powered nanomotor with integrated functions for cancer photo-theranostics. Biomaterials 288, 121744–121753 (2022).

    CAS  Google Scholar 

  58. Yan, X. et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2, eaaq1155 (2017).

    Google Scholar 

  59. Soler, L., Magdanz, V., Fomin, V. M., Sanchez, S. & Schmidt, O. G. Self-propelled micromotors for cleaning polluted water. ACS Nano 7, 9611–9620 (2013). A demonstration of self-propelled micromotors for the efficient oxidation of organic pollutants by improving intermixing in liquids.

    CAS  Google Scholar 

  60. Orozco, J. et al. Artificial enzyme-powered microfish for water-quality testing. ACS Nano 7, 818–824 (2013).

    CAS  Google Scholar 

  61. Villa, K., Parmar, J., Vilela, D. & Sánchez, S. Metal-oxide-based microjets for the simultaneous removal of organic pollutants and heavy metals. ACS Appl. Mater. Interfaces 10, 20478–20486 (2018).

    CAS  Google Scholar 

  62. Villa, K. et al. Visible-light-driven single-component BiVO4 micromotors with the autonomous ability for capturing microorganisms. ACS Nano 13, 8135–8145 (2019).

    CAS  Google Scholar 

  63. Ye, H. et al. Atomic H* mediated fast decontamination of antibiotics by bubble-propelled magnetic iron-manganese oxides core-shell micromotors. Appl. Catal. B 314, 121484 (2022).

    CAS  Google Scholar 

  64. Chen, C., Ding, S. & Wang, J. Materials consideration for the design, fabrication and operation of microscale robots. Nat. Rev. Mater. 9, 159–172 (2024).

    Google Scholar 

  65. Wang, Y. et al. Swarm autonomy: from agent functionalization to machine intelligence. Adv. Mater. 37, 202312956 (2024).

    Google Scholar 

  66. Zhang, Y. & Hess, H. Chemically-powered swimming and diffusion in the microscopic world. Nat. Rev. Chem. 5, 500–510 (2021).

    CAS  Google Scholar 

  67. Chen, S., Prado-Morales, C., Sánchez-DeAlcázar, D. & Sánchez, S. Enzymatic micro/nanomotors in biomedicine: from single motors to swarms. J. Mater. Chem. B 12, 2711–2719 (2024).

    CAS  Google Scholar 

  68. Wang, Q., Yang, S. & Zhang, L. Untethered micro/nanorobots for remote sensing: toward intelligent platform. Nano Micro Lett. 16, 40 (2024).

    Google Scholar 

  69. Dutta, S. et al. Recent developments in metallic degradable micromotors for biomedical and environmental remediation applications. Nano Micro Lett. 16, 1–35 (2023).

    Google Scholar 

  70. Yang, L. et al. Autonomous environment-adaptive microrobot swarm navigation enabled by deep learning-based real-time distribution planning. Nat. Mach. Intell. 4, 480–493 (2022). A breakthrough in microrobot swarm navigation by integrating machine learning for environment-adaptive reconfiguration, thereby connecting computational intelligence to microrobot swarming.

    Google Scholar 

  71. Ghosh, A. et al. Helical nanomachines as mobile viscometers. Adv. Funct. Mater. 28, 1705687 (2018).

    Google Scholar 

  72. Patiño, T., Llacer-Wintle, J., Pujals, S., Albertazzi, L. & Sánchez, S. Unveiling protein corona formation around self-propelled enzyme nanomotors by nanoscopy. Nanoscale 16, 2904–2912 (2023).

    Google Scholar 

  73. Dasgupta, D. et al. Mobile nanobots for prevention of root canal treatment failure. Adv. Healthc. Mater. 11, 2200232 (2022).

    CAS  Google Scholar 

  74. Dasgupta, D., Pally, D., Saini, D. K., Bhat, R. & Ghosh, A. Nanomotors sense local physicochemical heterogeneities in tumor microenvironments. Angew. Chem. Int. Ed. 59, 23690–23696 (2020).

    CAS  Google Scholar 

  75. Gao, C., Zhou, C., Lin, Z., Yang, M. & He, Q. Surface wettability-directed propulsion of glucose-powered nanoflask motors. ACS Nano 13, 12758–12766 (2019).

    CAS  Google Scholar 

  76. Simmchen, J. et al. Topographical pathways guide chemical microswimmers. Nat. Commun. 7, 10598 (2016).

    CAS  Google Scholar 

  77. Blanchard, A. T. et al. Highly polyvalent DNA motors generate 100+ pN of force via autochemophoresis. Nano Lett. 19, 6977–6986 (2019).

    CAS  Google Scholar 

  78. Ma, X. et al. Enzyme-powered hollow mesoporous Janus nanomotors. Nano Lett. 15, 7043–7050 (2015).

    Google Scholar 

  79. Patiño, T. et al. Influence of enzyme quantity and distribution on the self-propulsion of non-Janus urease-powered micromotors. J. Am. Chem. Soc. 140, 7896–7903 (2018).

    Google Scholar 

  80. Singh, D. P. et al. Interface-mediated spontaneous symmetry breaking and mutual communication between drops containing chemically active particles. Nat. Commun. 11, 2210 (2020).

    CAS  Google Scholar 

  81. Venugopalan, P. L. et al. Conformal cytocompatible ferrite coatings facilitate the realization of a nanovoyager in human blood. Nano Lett. 14, 1968–1975 (2014).

    CAS  Google Scholar 

  82. Venugopalan, P. L., Jain, S., Shivashankar, S. & Ghosh, A. Single coating of zinc ferrite renders magnetic nanomotors therapeutic and stable against agglomeration. Nanoscale 10, 2327–2332 (2018).

    CAS  Google Scholar 

  83. Zhang, L. et al. Artificial bacterial flagella: fabrication and magnetic control. Appl. Phys. Lett. 94, 064107 (2009).

    Google Scholar 

  84. Kadiri, V. M. et al. Biocompatible magnetic micro- and nanodevices: fabrication of FePt nanopropellers and cell transfection. Adv. Mater. 32, 2001114 (2020).

    CAS  Google Scholar 

  85. Peter, F. et al. Degradable and biocompatible magnesium zinc structures for nanomedicine: magnetically actuated liposome microcarriers with tunable release. Adv. Funct. Mater. 34, 2314265 (2024).

    CAS  Google Scholar 

  86. Wilson, D., Nolte, R. & van Hest, J. Autonomous movement of platinum-loaded stomatocytes. Nat. Chem. 4, 268–274 (2012).

    CAS  Google Scholar 

  87. Liang, Z. & Fan, D. Visible light-gated reconfigurable rotary actuation of electric nanomotors. Sci. Adv. 4, eaau0981 (2018).

    Google Scholar 

  88. Liang, Z., Teal, D. & Fan, D. Light programmable micro/nanomotors with optically tunable in-phase electric polarization. Nat. Commun. 10, 5275 (2019).

    Google Scholar 

  89. Liang, Z., Joh, H., Lian, B., Fan, D. E. & Fan, D. E. Light-stimulated micromotor swarms in an electric field with accurate spatial, temporal, and mode control. Sci. Adv. 9, eadi9932 (2023).

    CAS  Google Scholar 

  90. Zhang, J. et al. Light-powered, fuel-free oscillation, migration, and reversible manipulation of multiple cargo types by micromotor swarms. ACS Nano 17, 251–262 (2023).

    CAS  Google Scholar 

  91. Li, W. et al. Arbitrary construction of versatile NIR-driven microrobots. Adv. Mater. 36, 2402482 (2024).

    CAS  Google Scholar 

  92. Crosby, G. A., Watts, R. J. & Carstens, D. H. W. Inversion of excited states of transition-metal complexes. Science 170, 1195–1196 (1970).

    CAS  Google Scholar 

  93. Zhou, J., Liu, Q., Feng, W., Sun, Y. & Li, F. Upconversion luminescent materials: advances and applications. Chem. Rev. 115, 395–465 (2015).

    CAS  Google Scholar 

  94. Dey, K. K. et al. Micromotors powered by enzyme catalysis. Nano Lett. 15, 8311–8315 (2015).

    CAS  Google Scholar 

  95. Pantarotto, D., Browne, W. R. & Feringa, B. L. Autonomous propulsion of carbon nanotubes powered by a multienzyme ensemble. Chem. Commun. 44, 1533–1535 (2008).

    Google Scholar 

  96. Somasundar, A. et al. Positive and negative chemotaxis of enzyme-coated liposome motors. Nat. Nanotechnol. 14, 1129–1134 (2019).

    CAS  Google Scholar 

  97. Joseph, A. et al. Chemotactic synthetic vesicles: design and applications in blood-brain barrier crossing. Sci. Adv. 3, e1700362 (2017).

    Google Scholar 

  98. Agudo-Canalejo, J., Illien, P. & Golestanian, R. Phoresis and enhanced diffusion compete in enzyme chemotaxis. Nano Lett. 18, 2711–2717 (2018).

    CAS  Google Scholar 

  99. Zhao, X. et al. Substrate-driven chemotactic assembly in an enzyme cascade. Nat. Chem. 10, 311–317 (2018).

    CAS  Google Scholar 

  100. Arqué, X. et al. Intrinsic enzymatic properties modulate the self-propulsion of micromotors. Nat. Commun. 10, 2826 (2019).

    Google Scholar 

  101. Pumm, A. K. et al. A DNA origami rotary ratchet motor. Nature 607, 492–498 (2022).

    CAS  Google Scholar 

  102. Tran, M. P. et al. Genetic encoding and expression of RNA origami cytoskeletons in synthetic cells. Nat. Nanotechnol. 20, 664–671 (2025).

    CAS  Google Scholar 

  103. Yang, L., Yu, J. & Zhang, L. Statistics-based automated control for a swarm of paramagnetic nanoparticles in 2-D space. IEEE Trans. Robot. 36, 254–270 (2020).

    Google Scholar 

  104. Rückner, G. & Kapral, R. Chemically powered nanodimers. Phys. Rev. Lett. 98, 150603 (2007).

    Google Scholar 

  105. Thakur, S., Chen, J. X. & Kapral, R. Interaction of a chemically propelled nanomotor with a chemical wave. Angew. Chem. Int. Ed. 50, 10165–10169 (2011).

    CAS  Google Scholar 

  106. De Corato, M. et al. Self-propulsion of active colloids via ion release: theory and experiments. Phys. Rev. Lett. 124, 108001 (2020).

    Google Scholar 

  107. Golestanian, R. Anomalous diffusion of symmetric and asymmetric active colloids. Phys. Rev. Lett. 102, 188305 (2009).

    Google Scholar 

  108. Liebchen, B., Marenduzzo, D., Pagonabarraga, I. & Cates, M. E. Clustering and pattern formation in chemorepulsive active colloids. Phys. Rev. Lett. 115, 258301 (2015).

    Google Scholar 

  109. Das, S. et al. Boundaries can steer active Janus spheres. Nat. Commun. 6, 8999 (2015).

    CAS  Google Scholar 

  110. Palacios, L. S. et al. Guided accumulation of active particles by topological design of a second-order skin effect. Nat. Commun. 12, 4691 (2021).

    CAS  Google Scholar 

  111. Saha, S., Ramaswamy, S. & Golestanian, R. Pairing, waltzing and scattering of chemotactic active colloids. New J. Phys. 21, 063006 (2019).

    CAS  Google Scholar 

  112. Meredith, C. H. et al. Predator–prey interactions between droplets driven by non-reciprocal oil exchange. Nat. Chem. 12, 1136–1142 (2020).

    CAS  Google Scholar 

  113. Soto, R. & Golestanian, R. Self-assembly of catalytically active colloidal molecules: tailoring activity through surface chemistry. Phys. Rev. Lett. 112, 068301 (2014).

    Google Scholar 

  114. Mandal, N. S., Sen, A. & Astumian, R. D. A molecular origin of non-reciprocal interactions between interacting active catalysts. Chem 10, 1147–1159 (2024).

    CAS  Google Scholar 

  115. Tucci, G. et al. Nonreciprocal collective dynamics in a mixture of phoretic Janus colloids. New J. Phys. 26, 073006 (2024).

    CAS  Google Scholar 

  116. Agudo-Canalejo, J. & Golestanian, R. Active phase separation in mixtures of chemically interacting particles. Phys. Rev. Lett. 123, 018101 (2019).

    CAS  Google Scholar 

  117. Golestanian, R. in Active Matter and Nonequilibrium Statistical Physics: Lecture Notes of the Les Houches Summer School Vol. 112 (eds Tailleur, J. et al.) 230–293 (Oxford Academic, 2022).

  118. Wang, Q. et al. Tracking and navigation of a microswarm under laser speckle contrast imaging for targeted delivery. Sci. Robot. 9, eadh1978 (2024).

    Google Scholar 

  119. Jin, D. et al. Swarming self-adhesive microgels enabled aneurysm on-demand embolization in physiological blood flow. Sci. Adv. 9, eadf9278 (2023).

    CAS  Google Scholar 

  120. Ahmed, D. et al. Bioinspired acousto-magnetic microswarm robots with upstream motility. Nat. Mach. Intell. 3, 116–124 (2021).

    Google Scholar 

  121. Palacci, J. et al. Artificial rheotaxis. Sci. Adv. 1, e1400214 (2015).

    Google Scholar 

  122. Ren, L. et al. Rheotaxis of bimetallic micromotors driven by chemical-acoustic hybrid power. ACS Nano 11, 10591–10598 (2017).

    CAS  Google Scholar 

  123. Choi, H., Cho, S. H. & Hahn, S. K. Urease-powered polydopamine nanomotors for intravesical therapy of bladder diseases. ACS Nano 14, 6683–6692 (2020).

    CAS  Google Scholar 

  124. Wu, Z. et al. A swarm of slippery micropropellers penetrates the vitreous body of the eye. Sci. Adv. 4, eaat4388 (2018).

    CAS  Google Scholar 

  125. Xu, C. et al. Magnesium-based micromotors as hydrogen generators for precise rheumatoid arthritis therapy. Nano Lett. 21, 1982–1991 (2021).

    CAS  Google Scholar 

  126. Zhang, F. et al. Biohybrid microrobots locally and actively deliver drug-loaded nanoparticles to inhibit the progression of lung metastasis. Sci. Adv. 10, eadn6157 (2024).

    CAS  Google Scholar 

  127. Arqué, X. et al. Autonomous treatment of bacterial infections in vivo using antimicrobial micro- and nanomotors. ACS Nano 16, 7547–7558 (2022).

    Google Scholar 

  128. Ji, X. et al. Multifunctional parachute-like nanomotors for enhanced skin penetration and synergistic antifungal therapy. ACS Nano 15, 14218–14228 (2021).

    CAS  Google Scholar 

  129. Dey, K. K. Dynamic coupling at low Reynolds number. Angew. Chem. Int. Ed. 58, 2208–2228 (2019).

    CAS  Google Scholar 

  130. Maiti, A., Koyano, Y., Kitahata, H. & Dey, K. K. Activity-induced diffusion recovery in crowded colloidal suspensions. Phys. Rev. E 109, 054607 (2024).

    CAS  Google Scholar 

  131. Pal, M. et al. Maneuverability of magnetic nanomotors inside living cells. Adv. Mater. 30, 1800429 (2018).

    Google Scholar 

  132. Aghakhani, A. et al. High shear rate propulsion of acoustic microrobots in complex biological fluids. Sci. Adv. 8, eabm5126 (2022).

    CAS  Google Scholar 

  133. Osat, S. & Golestanian, R. Non-reciprocal multifarious self-organization. Nat. Nanotechnol. 18, 79–85 (2022).

    Google Scholar 

  134. Manna, R. K., Gentile, K., Shklyaev, O. E., Sen, A. & Balazs, A. C. Self-generated convective flows enhance the rates of chemical reactions. Langmuir 38, 1432–1439 (2022).

    CAS  Google Scholar 

  135. Ma, X., Wang, X., Hahn, K. & Sánchez, S. Motion control of urea-powered biocompatible hollow microcapsules. ACS Nano 10, 3597–3605 (2016).

    CAS  Google Scholar 

  136. Mehta, P., Lang, A. H. & Schwab, D. J. Landauer in the age of synthetic biology: energy consumption and information processing in biochemical networks. J. Stat. Phys. 162, 1153–1166 (2016).

    Google Scholar 

  137. Jahnke, K. et al. DNA origami signaling units transduce chemical and mechanical signals in synthetic cells. Adv. Funct. Mater. 34, 2301176 (2024).

    CAS  Google Scholar 

  138. Zhang, F. et al. ACE2 receptor-modified algae-based microrobot for removal of SARS-CoV-2 in wastewater. J. Am. Chem. Soc. 143, 12194–12201 (2021).

    CAS  Google Scholar 

  139. Yuan, X., Ferrer-Campos, R., Garcés-Pineda, F. A. & Villa, K. Molecular imprinted BiVO4 microswimmers for selective target recognition and removal. Small 19, 2207303 (2023).

    CAS  Google Scholar 

  140. Yuan, X. et al. Self-degradable photoactive micromotors for inactivation of resistant bacteria. Adv. Opt. Mater. 12, 2303137 (2024).

    CAS  Google Scholar 

  141. Guix, M. et al. Superhydrophobic alkanethiol-coated microsubmarines for effective removal of oil. ACS Nano 6, 4445–4451 (2012).

    CAS  Google Scholar 

  142. Ferrer Campos, R., Bachimanchi, H., Volpe, G. & Villa, K. Bubble-propelled micromotors for ammonia generation. Nanoscale 15, 15785–15793 (2023).

    CAS  Google Scholar 

  143. Ferrer Campos, R. et al. Boosting the efficiency of photoactive rod-shaped nanomotors via magnetic field-induced charge separation. ACS Appl. Mater. Interfaces 16, 30077–30087 (2024).

    CAS  Google Scholar 

  144. Parmar, J. et al. Reusable and long-lasting active microcleaners for heterogeneous water remediation. Adv. Funct. Mater. 26, 4152–4161 (2016).

    CAS  Google Scholar 

  145. Vilela, D., Guix, M., Parmar, J., Blanco-Blanes, À. & Sánchez, S. Micromotor-in-sponge platform for multicycle large-volume degradation of organic pollutants. Small 18, 2107619 (2022).

    CAS  Google Scholar 

  146. Zhang, S. et al. 3D-printed micrometer-scale wireless magnetic cilia with metachronal programmability. Sci. Adv. 9, eadf9462 (2023).

    CAS  Google Scholar 

  147. Tottori, S. et al. Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv. Mater. 24, 811–816 (2012). The demonstration of two-photon laser-printed microrobots.

    CAS  Google Scholar 

  148. Hsu, L. Y. et al. Alignment and actuation of liquid crystals via 3D confinement and two-photon laser printing. Sci. Adv. 10, 2597 (2024).

    Google Scholar 

  149. Melde, K. et al. Ultrasound-assisted tissue engineering. Nat. Rev. Bioeng. 2, 486–500 (2024).

    CAS  Google Scholar 

  150. Kriebisch, C. M. E. et al. A roadmap toward the synthesis of life. Chem 11, 102399 (2025).

    CAS  Google Scholar 

  151. Balazs, A. C., Fischer, P. & Sen, A. Intelligent nano/micromotors: using free energy to fabricate organized systems driven far from equilibrium. Acc. Chem. Res. 51, 2979 (2018).

    CAS  Google Scholar 

  152. Song, J., Shklyaev, O. E., Sapre, A., Balazs, A. C. & Sen, A. Self-propelling macroscale sheets powered by enzyme pumps. Angew. Chem. Int. Ed. 136, e202311556 (2024).

    Google Scholar 

  153. Gao, W. et al. Artificial micromotors in the mouse’s stomach: a step toward in vivo use of synthetic motors. ACS Nano 9, 117–123 (2015).

    CAS  Google Scholar 

  154. Li, J. et al. Enteric micromotor can selectively position and spontaneously propel in the gastrointestinal tract. ACS Nano 10, 9536–9542 (2016).

    CAS  Google Scholar 

  155. De Ávila, B. E. F. et al. Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat. Commun. 8, 272 (2017).

    Google Scholar 

  156. Zhang, F. et al. Nanoparticle-modified microrobots for in vivo antibiotic delivery to treat acute bacterial pneumonia. Nat. Mater. 21, 1324–1332 (2022). Biohybrid microrobots for the active delivery of antibiotics in the lungs in vivo, demonstrating notable potential for clinical applications in intensive care units.

    CAS  Google Scholar 

  157. Su, L. et al. Modularized microrobot with lock-and-detachable modules for targeted cell delivery in bile duct. Sci. Adv. 9, eadj0883 (2023).

    CAS  Google Scholar 

  158. Feng, Y. et al. Directed neural stem cells differentiation via signal communication with Ni–Zn micromotors. Adv. Mater. 35, 2301736 (2023).

    CAS  Google Scholar 

  159. Choi, H. et al. Urease-powered nanomotor containing STING agonist for bladder cancer immunotherapy. Nat. Commun. 15, 9934 (2024).

    CAS  Google Scholar 

  160. Gao, C. et al. Light-driven artificial cell micromotors for degenerative knee osteoarthritis. Adv. Mater. 37, 2416349 (2025).

    CAS  Google Scholar 

  161. Kagan, D. et al. Chemical sensing based on catalytic nanomotors: motion-based detection of trace silver. J. Am. Chem. Soc. 131, 12082–12083 (2009).

    CAS  Google Scholar 

  162. Campuzano, S. et al. Bacterial isolation by lectin-modified microengines. Nano Lett. 12, 396–401 (2012).

    CAS  Google Scholar 

  163. Li, J. et al. Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents. ACS Nano 8, 11118–11125 (2014).

    CAS  Google Scholar 

  164. Gao, L., Giglio, K. M., Nelson, J. L., Sondermann, H. & Travis, A. J. Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination. Nanoscale 6, 2588–2593 (2014).

    CAS  Google Scholar 

  165. Vilela, D., Parmar, J., Zeng, Y., Zhao, Y. & Sánchez, S. Graphene-based microbots for toxic heavy metal removal and recovery from water. Nano Lett. 16, 2860–2866 (2016).

    CAS  Google Scholar 

  166. Jurado-Sánchez, B., Pacheco, M., Rojo, J. & Escarpa, A. Magnetocatalytic graphene quantum dots Janus micromotors for bacterial endotoxin detection. Angew. Chem. Int. Ed. 56, 6957–6961 (2017).

    Google Scholar 

  167. Villa, K., Děkanovský, L., Plutnar, J., Kosina, J. & Pumera, M. Swarming of perovskite-like Bi2WO6 microrobots destroy textile fibers under visible light. Adv. Funct. Mater. 30, 2007073 (2020).

    CAS  Google Scholar 

  168. Mou, F. et al. ZnO-based micromotors fueled by CO2: the first example of self-reorientation-induced biomimetic chemotaxis. Natl Sci. Rev. 8, nwab066 (2021).

    CAS  Google Scholar 

  169. Urso, M., Ussia, M., Novotný, F. & Pumera, M. Trapping and detecting nanoplastics by MXene-derived oxide microrobots. Nat. Commun. 13, 3573(2022).

    CAS  Google Scholar 

  170. Patiño, T. et al. Synthetic DNA-based swimmers driven by enzyme catalysis. J. Am. Chem. Soc. 146, 12664–12671 (2024).

    Google Scholar 

Download references