A strategic approach to multi-omics literature retrieval in next generation mammalian cell bioprocessing

a-strategic-approach-to-multi-omics-literature-retrieval-in-next-generation-mammalian-cell-bioprocessing
A strategic approach to multi-omics literature retrieval in next generation mammalian cell bioprocessing

References

  1. Kriete, A. Bridging biological scales by state–space analysis and modeling using molecular, tissue cytometric and physiological data. Cytom. Part A 69A, 113–116 (2006).

    Google Scholar 

  2. Joyce, A. R. & Palsson, B. Ø The model organism as a system: integrating ‘omics’ data sets. Nat. Rev. Mol. Cell Biol. 7, 198–210 (2006).

    Google Scholar 

  3. Farrell, A., McLoughlin, N., Milne, J. J., Marison, I. W. & Bones, J. Application of Multi-Omics Techniques for Bioprocess Design and Optimization in Chinese Hamster Ovary Cells. J. Proteome Res. 13, 3144–3159 (2014).

    Google Scholar 

  4. Bezjak, L. et al. Incorporating RNA-Seq transcriptomics into glycosylation-integrating metabolic network modelling kinetics: Multiomic Chinese hamster ovary (CHO) cell bioreactors. Biotechnol. Bioeng. 118, 1476–1490 (2021).

    Google Scholar 

  5. Ali, A. S. et al. Multi-Omics Study on the Impact of Cysteine Feed Level on Cell Viability and mAb Production in a CHO Bioprocess. Biotechnol. J. 14, 1800352 (2019).

    Google Scholar 

  6. Kyriakopoulos, S. et al. Kinetic Modeling of Mammalian Cell Culture Bioprocessing: The Quest to Advance Biomanufacturing. Biotechnol. J. 13, 1700229 (2018).

    Google Scholar 

  7. Tsao, Y.-S., Condon, R., Schaefer, E., Lio, P. & Liu, Z. Development and improvement of a serum-free suspension process for the production of recombinant adenoviral vectors using HEK293 cells. Cytotechnology 37, 189–198 (2001).

    Google Scholar 

  8. Meissner, P. et al. Transient gene expression: Recombinant protein production with suspension-adapted HEK293-EBNA cells. Biotechnol. Bioeng. 75, 197–203 (2001).

    Google Scholar 

  9. Yasemin Van, H. & Jörn, S. Development of Lentiviral Packaging Cells and Scale Up of Production to Meet the Growing Demand in Cell and Gene Therapy. Curr. Gene Ther. 25, 1–13 (2025).

    Google Scholar 

  10. Baldi, L., Hacker, D. L., Adam, M. & Wurm, F. M. Recombinant protein production by large-scale transient gene expression in mammalian cells: state of the art and future perspectives. Biotechnol. Lett. 29, 677–684 (2007).

    Google Scholar 

  11. Price, E. et al. What is the real value of omics data? Enhancing research outcomes and securing long-term data excellence. Nucleic Acids Res. 52, 12130–12140 (2024).

    Google Scholar 

  12. Khan, K. H. Gene expression in Mammalian cells and its applications. Adv. Pharm. Bull. 3, 257–263 (2013).

    Google Scholar 

  13. Yasumura, M. Studies on SV40 in tissue culture. Nihon-Rinsho 21, 175 (1963).

    Google Scholar 

  14. Macpherson, I. & Stoker, M. Polyoma transformation of hamster cell clones—an investigation of genetic factors affecting cell competence. Virology 16, 147–151 (1962).

    Google Scholar 

  15. Ham, R. G. An improved nutrient solution for diploid Chinese hamster and human cell lines. Exp. Cell Res. 29, 515–526 (1963).

    Google Scholar 

  16. Graham, F. L., Smiley, J., Russell, W. C. & Nairn, R. Characteristics of a Human Cell Line Transformed by DNA from Human Adenovirus Type 5. J. Gen. Virol. 36, 59–72 (1977).

    Google Scholar 

  17. Fallaux, F. J. et al. New Helper Cells and Matched Early Region 1-Deleted Adenovirus Vectors Prevent Generation of Replication-Competent Adenoviruses. Hum. Gene Ther. 9, 1909–1917 (1998).

    Google Scholar 

  18. Jacobs, J. P., Jones, C. M. & Baille, J. P. Characteristics of a Human Diploid Cell Designated MRC-5. Nature 227, 168–170 (1970).

    Google Scholar 

  19. Potter, M. & Boyce, C. R. Induction of Plasma-Cell Neoplasms in Strain BALB/c Mice with Mineral Oil and Mineral Oil Adjuvants. Nature 193, 1086–1087 (1962).

    Google Scholar 

  20. Sarntivijai, S., Ade, A. S., Athey, B. D. & States, D. J. A bioinformatics analysis of the cell line nomenclature. Bioinformatics 24, 2760–2766 (2008).

    Google Scholar 

  21. Pontifical Academy for Life Pontifical Academy for Life Statement: Moral Reflections on Vaccines Prepared from Cells Derived from Aborted Human Foetuses. Linacre Q. 86, 182–187 (2019).

    Google Scholar 

  22. Fred, H. L. & Cheng, T. O. Acronymesis: the exploding misuse of acronyms. Tex. Heart Inst. J. 30, 255–257 (2003).

    Google Scholar 

  23. Day, R. A. & Gastel, B. How to Write and Publish a Scientific Paper. (Greenwood, 2011).

  24. Pisano, M. et al. Laboratory Mice – A Driving Force in Immunopathology and Immunotherapy Studies of Human Multiple Myeloma. Front Immunol. 12, 667054 (2021).

    Google Scholar 

  25. Bairoch, A. The Cellosaurus, a Cell-Line Knowledge Resource. J. Biomol. Tech. 29, 25–38 (2018).

    Google Scholar 

  26. LoPachin, R. M. & Gavin, T. Molecular Mechanisms of Aldehyde Toxicity: A Chemical Perspective. Chem. Res. Toxicol. 27, 1081–1091 (2014).

    Google Scholar 

  27. Li, B. et al. Self-assembled aldehyde dehydrogenase-activatable nano-prodrug for cancer stem cell-enriched tumor detection and treatment. Nat. Commun. 15, 9417 (2024).

    Google Scholar 

  28. Kim, J. Y., Kim, Y. G. & Lee, G. M. CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol. 93, 917–930 (2012).

    Google Scholar 

  29. Xu, X. et al. The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat. Biotechnol. 29, 735–741 (2011).

    Google Scholar 

  30. Fischer, S., Handrick, R. & Otte, K. The art of CHO cell engineering: A comprehensive retrospect and future perspectives. Biotechnol. Adv. 33, 1878–1896 (2015).

    Google Scholar 

  31. Rejc, Ž. et al. Computational modelling of genome-scale metabolic networks and its application to CHO cell cultures. Computers Biol. Med. 88, 150–160 (2017).

    Google Scholar 

  32. Malm, M. et al. Harnessing secretory pathway differences between HEK293 and CHO to rescue production of difficult to express proteins. Metab. Eng. 72, 171–187 (2022).

    Google Scholar 

  33. Smiatek, J., Jung, A. & Bluhmki, E. Validation Is Not Verification: Precise Terminology and Scientific Methods in Bioprocess Modeling. Trends Biotechnol. 39, 1117–1119 (2021).

    Google Scholar 

  34. Thermo & Fisher, S. Perfusion Terminology: Understanding Key Terms and Concepts in Perfusion Cell Culture, (2016).

  35. Zhao, S., Su, C., Lu, Z. & Wang, F. Recent advances in biomedical literature mining. Briefings in Bioinformatics 22 https://doi.org/10.1093/bib/bbaa057 (2020).

  36. McGettigan, P. A. Transcriptomics in the RNA-seq era. Curr. Opin. Chem. Biol. 17, 4–11 (2013).

    Google Scholar 

  37. Rafols, I., Leydesdorff, L., O’Hare, A., Nightingale, P. & Stirling, A. How journal rankings can suppress interdisciplinary research: A comparison between Innovation Studies and Business & Management. Res. Policy 41, 1262–1282 (2012).

    Google Scholar 

  38. Clarivate. KeyWords Plus generation, creation, and changes, (2025).

  39. Basson, I., Simard, M.-A., Ouangré, Z. A., Sugimoto, C. R. & Larivière, V. The effect of data sources on the measurement of open access: A comparison of Dimensions and the Web of Science. PLOS ONE 17, e0265545 (2022).

    Google Scholar 

  40. Suber, P. in Open Access 0 (The MIT Press, 2012).

  41. Lin, D. et al. CHOmics: A web-based tool for multi-omics data analysis and interactive visualization in CHO cell lines. PLOS Comput. Biol. 16, e1008498 (2020).

    Google Scholar 

  42. Nguyen, M. et al. Mechanistic insights into the biological activity of S-Sulfocysteine in CHO cells using a multi-omics approach. Front. Bioeng. Biotechnol. 11 – 2023 https://doi.org/10.3389/fbioe.2023.1230422 (2023).

  43. Demirhan, D. et al. Comparative systeomics to elucidate physiological differences between CHO and SP2/0 cell lines. Sci. Rep. 12, 3280 (2022).

    Google Scholar 

  44. Sulaj, E. et al. Quantitative proteomics reveals cellular responses to individual mAb expression and tunicamycin in CHO cells. Appl. Microbiol. Biotechnol. 108, 381 (2024).

    Google Scholar 

  45. Chitwood, D. G. et al. Microevolutionary dynamics of eccDNA in Chinese hamster ovary cells grown in fed-batch cultures under control and lactate-stressed conditions. Sci. Rep. 13, 1200 (2023).

    Google Scholar 

  46. Huhn, S. et al. Chromosomal instability drives convergent and divergent evolution toward advantageous inherited traits in mammalian CHO bioproduction lineages. iScience 25, 104074 (2022).

    Google Scholar 

  47. Dahodwala, H. et al. Increased mAb production in amplified CHO cell lines is associated with increased interaction of CREB1 with transgene promoter. Curr. Res. Biotechnol. 1, 49–57 (2019).

    Google Scholar 

  48. Keysberg, C. et al. Exploring the molecular content of CHO exosomes during bioprocessing. Appl. Microbiol. Biotechnol. 105, 3673–3689 (2021).

    Google Scholar 

  49. Zamani, L. et al. High Cell Density Perfusion Culture has a Maintained Exoproteome and Metabolome. Biotechnol. J. 13, 1800036 (2018).

    Google Scholar 

  50. Yusufi, F. N. K. et al. Mammalian Systems Biotechnology Reveals Global Cellular Adaptations in a Recombinant CHO Cell Line. Cell Syst. 4, 530–542.e536 (2017).

    Google Scholar 

  51. Lewis, A. M. et al. Understanding and Controlling Sialylation in a CHO Fc-Fusion Process. PLOS ONE 11, e0157111 (2016).

    Google Scholar 

  52. Sebastião, M. J. et al. Identification of Mispairing Omic Signatures in Chinese Hamster Ovary (CHO) Cells Producing a Tri-Specific Antibody. Biomedicines 11, 2890 (2023).

    Google Scholar 

  53. Do Minh, A. et al. Characterization of Extracellular Vesicles Secreted in Lentiviral Producing HEK293SF Cell Cultures. Viruses 13, 797 (2021).

    Google Scholar 

  54. Keysberg, C. et al. Hyperthermic shift and cell engineering increase small extracellular vesicle production in HEK293F cells. Biotechnol. Bioeng. 121, 942–958 (2024).

    Google Scholar 

  55. Lin, Y. C., Lu, M., Cai, W. & Hu, W. S. Comparative transcriptomic and proteomic kinetic analysis of adeno-associated virus production systems. Appl Microbiol Biotechnol. 108, 385 (2024).

    Google Scholar 

  56. Zehetner, L., Széliová, D., Kraus, B., Hernandez Bort, J. A. & Zanghellini, J. Multi-omics driven genome-scale metabolic modeling improves viral vector yield in HEK293. Metab. Eng. 91, 103–118 (2025).

    Google Scholar 

  57. Malm, M. et al. Evolution from adherent to suspension: systems biology of HEK293 cell line development. Sci. Rep. 10, 18996 (2020).

    Google Scholar 

  58. Kreuzthaler, M., Brochhausen, M., Zayas, C., Blobel, B. & Schulz, S. Linguistic and ontological challenges of multiple domains contributing to transformed health ecosystems. Front Med (Lausanne) 10, 1073313 (2023).

    Google Scholar 

  59. Natukunda, A. & Muchene, L. K. Unsupervised title and abstract screening for systematic review: a retrospective case-study using topic modelling methodology. Syst. Rev. 12,https://doi.org/10.1186/s13643-022-02163-4 (2023).

  60. Schwappach, B. Machines like us scientists? : AI tools for mining the scientific literature in basic biomedical science. EMBO Rep. 26, 3709–3713 (2025).

    Google Scholar 

  61. Hauser, A. S. The future of reviews: Will LLMs render them obsolete? EMBO Rep. 26, 4397–4401 (2025).

    Google Scholar 

  62. Du, J. et al. Use of deep learning-based NLP models for full-text data elements extraction for systematic literature review tasks. Sci. Rep. 15, 19379 (2025).

    Google Scholar 

  63. AlRyalat, S. A. S., Malkawi, L. W. & Momani, S. M. Comparing Bibliometric Analysis Using PubMed, Scopus, and Web of Science Databases. JoVE 152, e58494 (2019).

    Google Scholar 

  64. Falagas, M. E., Pitsouni, E. I., Malietzis, G. A. & Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. Faseb J. 22, 338–342 (2008).

    Google Scholar 

  65. Bar-Ilan, J. Citations to the “Introduction to informetrics” indexed by WOS, Scopus and Google Scholar. Scientometrics 82, 495–506 (2010).

    Google Scholar 

  66. Harzing, A.-W. & Alakangas, S. Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison. Scientometrics 106, 787–804 (2016).

    Google Scholar 

  67. López-Illescas, C., de Moya Anegón, F. & Moed, H. F. Comparing bibliometric country-by-country rankings derived from the Web of Science and Scopus: the effect of poorly cited journals in oncology. J. Inf. Sci. 35, 244–256 (2009).

    Google Scholar 

  68. Archambault, É, Campbell, D., Gingras, Y. & Larivière, V. Comparing bibliometric statistics obtained from the Web of Science and Scopus. J. Am. Soc. Inf. Sci. Technol. 60, 1320–1326 (2009).

    Google Scholar 

  69. Jiao, C., Li, K. & Fang, Z. How are exclusively data journals indexed in major scholarly databases? An examination of four databases. Sci. Data 10, 737 (2023).

    Google Scholar 

  70. Donner, P. Document type assignment accuracy in the Journal Citation Index data of Web of Science. Scientometrics 113, 219–236 (2017).

    Google Scholar 

  71. Pesta, B., Fuerst, J. & Kirkegaard, E. O. W. Bibliometric Keyword Analysis across Seventeen Years (2000-2016) of Intelligence Articles. J. Intell. 6 https://doi.org/10.3390/jintelligence6040046 (2018).

  72. Callon, M., Courtial, J. P. & Laville, F. Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer Chemistry. Scientometrics 22, 155–205 (1991).

    Google Scholar 

  73. Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 57, 359–377 (2006).

    Google Scholar 

Download references