A synthetic system for RNA-responsive pyroptosis based on type III-E CRISPR nuclease-protease

a-synthetic-system-for-rna-responsive-pyroptosis-based-on-type-iii-e-crispr-nuclease-protease
A synthetic system for RNA-responsive pyroptosis based on type III-E CRISPR nuclease-protease

References

  1. Broz, P. & Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol 16, 407–420 (2016).

    Google Scholar 

  2. Jorgensen, I. & Miao, E. A. Pyroptotic cell death defends against intracellular pathogens. Immunol. Rev 265, 130–142 (2015).

    Google Scholar 

  3. Rathinam, V. A. K., Zhao, Y. & Shao, F. Innate immunity to intracellular LPS. Nat. Immunol 20, 527–533 (2019).

    Google Scholar 

  4. Broz, P., Pelegrı´N, P. & Shao, F. The gasdermins, a protein family executing cell death and inflammation. Nat. Rev. Immunol 20, 143–157 (2020).

    Google Scholar 

  5. Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).

    Google Scholar 

  6. Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111–116 (2016).

    Google Scholar 

  7. Aglietti, R. A. et al. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc. Natl. Acad. Sci. USA 113, 7858–7863 (2016).

    Google Scholar 

  8. Kuang, S. et al. Structure insight of GSDMD reveals the basis of GSDMD autoinhibition in cell pyroptosis. Proc. Natl. Acad. Sci. USA 114, 10642–10647 (2017).

    Google Scholar 

  9. Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016).

    Google Scholar 

  10. Liu, X., Xia, S., Zhang, Z., Wu, H. & Lieberman, J. Channelling inflammation: gasdermins in physiology and disease. Nat. Rev. Drug Discov 20, 384–405 (2021).

    Google Scholar 

  11. Xia, S. et al. Synthetic protein circuits for programmable control of mammalian cell death. Cell 187, 2785–2800.e16 (2024).

    Google Scholar 

  12. Wang, Q. et al. A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature 579, 421–426 (2020).

    Google Scholar 

  13. Zhang, Z. et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 579, 415–420 (2020).

    Google Scholar 

  14. Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015).

    Google Scholar 

  15. Kayagaki, N. et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341, 1246–1249 (2013).

    Google Scholar 

  16. Shi, J. et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187–192 (2014).

    Google Scholar 

  17. Bernheim, A. & Sorek, R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat. Rev. Microbiol 18, 113–119 (2020).

    Google Scholar 

  18. Gao, L. et al. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084 (2020).

    Google Scholar 

  19. Shmakov, S. A. et al. Systematic prediction of genes functionally linked to CRISPR-Cas systems by gene neighborhood analysis. Proc. Natl. Acad. Sci. USA 115, E5307–E5316 (2018).

    Google Scholar 

  20. Shah, S. A. et al. Comprehensive search for accessory proteins encoded with archaeal and bacterial type III CRISPR-cas gene cassettes reveals 39 new cas gene families. RNA Biol 16, 530–542 (2019).

    Google Scholar 

  21. Özcan, A. et al. Programmable RNA targeting with the single-protein CRISPR effector Cas7-11. Nature 597, 720–725 (2021).

    Google Scholar 

  22. Sam, P. B., van Beljouw et al. The gRAMP CRISPR-Cas effector is an RNA endonuclease complexed with a caspase-like peptidase. Science 373, 1349–1353 (2021).

    Google Scholar 

  23. Strecker, J. et al. RNA-activated protein cleavage with a CRISPR-associated endopeptidase. Science 378, 874–881 (2022).

    Google Scholar 

  24. Kato, K. et al. Structure and engineering of the type III-E CRISPR-Cas7-11 effector complex. Cell 185, 2324–2337.e16 (2022).

    Google Scholar 

  25. Hu, C. et al. Craspase is a CRISPR RNA-guided, RNA-activated protease. Science 377, 1278–1285 (2022).

    Google Scholar 

  26. Kato, K. et al. RNA-triggered protein cleavage and cell growth arrest by the type III-E CRISPR nuclease-protease. Science 378, 882–889 (2022).

    Google Scholar 

  27. Stella, G. & Marraffini, L. Type III CRISPR-Cas: beyond the Cas10 effector complex. Trends. Biochem. Sci 49, 28–37 (2024).

    Google Scholar 

  28. Langedijk, A. C. & Bont, L. J. Respiratory syncytial virus infection and novel interventions. Nat. Rev. Microbiol 21, 734–749 (2023).

    Google Scholar 

  29. Schiffman, M. et al. Human papillomavirus and cervical cancer. Lancet 370, 890–907 (2007).

    Google Scholar 

  30. Ramos da Silva, J. et al. Single immunizations of self-amplifying or non-replicating mRNA-LNP vaccines control HPV-associated tumors in mice. Sci. Transl. Med 15, eabn3464 (2023).

    Google Scholar 

  31. Doorbar, J. Molecular biology of human papillomavirus infection and cervical cancer. Clin. Sci 110, 525–541 (2006).

    Google Scholar 

  32. Weng, C., Faure, A. J., Escobedo, A. & Lehner, B. The energetic and allosteric landscape for KRAS inhibition. Nature 626, 643–652 (2024).

    Google Scholar 

  33. Hofmann, M. H. et al. Expanding the reach of precision oncology by drugging all KRAS mutants. Cancer Discov 12, 924–937 (2022).

    Google Scholar 

  34. Bond, M. J. et al. Targeted degradation of oncogenic KRASG12C by VHL-recruiting PROTACs. ACS Cent Sci 6, 1367–1375 (2020).

    Google Scholar 

  35. Aqil, F. et al. Milk exosomes – natural nanoparticles for siRNA delivery. Cancer Lett 449, 186–195 (2019).

    Google Scholar 

  36. Skoulidis, F. et al. Sotorasib for lung cancers with KRAS p.G12C mutation. N. Engl. J. Med 384, 2371–2381 (2021).

    Google Scholar 

  37. Baker, D. J. et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016).

    Google Scholar 

  38. McHugh, D., Durán, I. & Gil, J. Senescence as a therapeutic target in cancer and age-related diseases. Nat. Rev. Drug. Discov 24, 57–71 (2024).

  39. Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med 383, 2603–2615 (2020).

    Google Scholar 

  40. Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med 384, 403–416 (2021).

    Google Scholar 

  41. Wessels, H. H. et al. Massively parallel Cas13 screens reveal principles for guide RNA design. Nat. Biotechnol 38, 722–727 (2020).

    Google Scholar 

  42. Zhou, B. et al. Full-length GSDME mediates pyroptosis independent from cleavage. Nat. Cell. Biol 26, 1545–1557 (2024).

    Google Scholar 

  43. Becker, M. E. et al. Live imaging of airway epithelium reveals that mucociliary clearance modulates SARS-CoV-2 spread. Nat. Commun 15, 9480 (2024).

    Google Scholar 

  44. Meng, E. C. et al. UCSF ChimeraX: tools for structure building and analysis. Protein. Sci 32, e4792 (2023).

    Google Scholar 

  45. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein. Sci 30, 70–82 (2021).

    Google Scholar 

  46. Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein. Sci 27, 14–25 (2018).

    Google Scholar 

Download references