A transpupillary approach for crosslinking Guinea pig sclera using WST11 and near-infrared light

a-transpupillary-approach-for-crosslinking-guinea-pig-sclera-using-wst11-and-near-infrared-light
A transpupillary approach for crosslinking Guinea pig sclera using WST11 and near-infrared light

References

  1. Holden, B. A. et al. Global prevalence of myopia and high myopia and Temporal trends from 2000 through 2050. Ophthalmology 123, 1036–1042 (2016).

    Google Scholar 

  2. Verkicharla, P. K., Ohno-Matsui, K. & Saw, S. M. Current and predicted demographics of high myopia and an update of its associated pathological changes. Ophthalmic Physiol. Opt. 35, 465–475 (2015).

    Google Scholar 

  3. Boote, C. et al. Scleral structure and biomechanics. Prog Retin Eye Res. 74, 100773 (2020).

    Google Scholar 

  4. Metlapally, R. & Wildsoet, C. F. Scleral mechanisms underlying ocular growth and myopia. Prog Mol. Biol. Transl Sci. 134, 241–248 (2015).

    Google Scholar 

  5. Cooper, J. & Tkatchenko, A. V. A review of current concepts of the etiology and treatment of myopia. Eye Contact Lens. 44, 231–247 (2018).

    Google Scholar 

  6. Wollensak, G. & Spoerl, E. Collagen crosslinking of human and Porcine sclera. J. Cataract Refract. Surg. 30, 689–695 (2004).

    Google Scholar 

  7. Wollensak, G., Iomdina, E., Dittert, D. D., Salamatina, O. & Stoltenburg, G. Cross-linking of scleral collagen in the rabbit using riboflavin and UVA. Acta Ophthalmol. Scand. 83, 477–482 (2005).

    Google Scholar 

  8. Zhang, Y. et al. Effect of irradiation time on riboflavin-ultraviolet-A collagen crosslinking in rabbit sclera. J. Cataract Refract. Surg. 39, 1184–1189 (2013).

    Google Scholar 

  9. Zhang, Y. et al. Comparison of riboflavin/ultraviolet-A cross-linking in porcine, rabbit, and human sclera. Biomed Res. Int. 194204 (2014). (2014).

  10. Wollensak, G. & Iomdina, E. Crosslinking of scleral collagen in the rabbit using glyceraldehyde. J. Cataract Refract. Surg. 34, 651–656 (2008).

    Google Scholar 

  11. Sun, X., Yan, X., Chen, D., Liu, X. & Wu, Y. Efficacy and safety of microbial transglutaminase-induced scleral stiffening in vivo. Exp. Eye Res. 227, 109387 (2023).

    Google Scholar 

  12. Kim, T. G., Kim, W., Choi, S. & Jin, K. H. Effects of scleral collagen crosslinking with different carbohydrate on chemical bond and ultrastructure of rabbit sclera: future treatment for myopia progression. PLoS One. 14, e0216425 (2019).

    Google Scholar 

  13. Hoang, Q. V. et al. Scleral growth stunting via sub-Tenon injection of cross-linking solutions in live rabbits. Br. J. Ophthalmol. 107, 889–894 (2023).

    Google Scholar 

  14. Lin, X. et al. Scleral cross-linking using glyceraldehyde for the prevention of axial elongation in the rabbit: blocked axial elongation and altered scleral microstructure. Curr. Eye Res. 44, 162–171 (2019).

    Google Scholar 

  15. Hamdaoui, M. et al. Effect of scleral crosslinking using multiple doses of Genipin on experimental progressive myopia in tree shrews. Transl Vis. Sci. Technol. 10, 1–1 (2021).

    Google Scholar 

  16. Guo, L. et al. Scleral cross-linking in form-deprivation myopic Guinea pig eyes leads to glaucomatous changes. Invest. Ophthalmol. Vis. Sci. 63, 24–24 (2022).

    Google Scholar 

  17. Grytz, R., Hamdaoui, M., El, Levy, A. M., Girkin, C. A. & Samuels, B. C. Scleral crosslinking using Genipin has a dose-dependent effect on form-deprivation myopia in tree shrews. Invest. Ophthalmol. Vis. Sci. 59, 708–708 (2018).

    Google Scholar 

  18. Hamdaoui, M. et al. Scleral crosslinking using Genipin can compromise retinal structure and function in tree shrews. Exp. Eye Res. 219, 109039 (2022).

    Google Scholar 

  19. Brekelmans, J. et al. Long-term Biomechanical and histologic results of WST-D/NIR corneal stiffening in rabbits, up to 8 months follow-up. Invest. Ophthalmol. Vis. Sci. 58, 4089–4095 (2017).

    Google Scholar 

  20. Howlett, M. H. C. & McFadden, S. A. Form-deprivation myopia in the Guinea pig (Cavia porcellus). Vis. Res. 46, 267–283 (2006).

    Google Scholar 

  21. Xiao, H., Fan, Z. Y., Tian, X. D. & Xu, Y. C. Comparison of form-deprived myopia and lens-induced myopia in Guinea pigs. Int. J. Ophthalmol. 7, 245 (2014).

    Google Scholar 

  22. Xu, Y. et al. Scleral remolding-related gene expression after scleral collagen cross-linking using ultraviolet A and riboflavin in myopic Guinea pig model. Curr. Eye Res. 48, 392–401 (2023).

    Google Scholar 

  23. Guo, Z. et al. Efficacy and safety evaluation of scleral cross-linking using Genipin in the treatment of juvenile Guinea pigs with high myopia. J. Ocul Pharmacol. Ther. 39, 643–652 (2023).

    Google Scholar 

  24. Duan, X., Zhao, Y., Cai, Z., Nie, F. & Liao, L. Effects of Genipin cross-linking on Biomechanical properties of sclera in myopic Guinea pigs and glaucoma Guinea pigs. Invest. Ophthalmol. Vis. Sci. 64, 2030–2030 (2023).

    Google Scholar 

  25. Huan, L. et al. Protective effects of riboflavin-UVA-mediated posterior sclera collagen cross-linking in a Guinea pig model of form-deprived myopia. Int. J. Ophthalmol. 14, 333 (2021).

    Google Scholar 

  26. Lv, X. et al. Effects of riboflavin/ultraviolet-A scleral collagen cross-linking on regional scleral thickness and expression of MMP-2 and MT1-MMP in myopic Guinea pigs. PLoS One. 18, e0279111 (2023).

    Google Scholar 

  27. Chen, Z., Lv, X., Lai, L., Xu, Y. & Zhang, F. Effects of riboflavin/ultraviolet-A(UVA) scleral crosslinking on the mechanical behavior of the scleral fibroblasts of lens-induced myopia Guinea pigs. Exp. Eye Res. 235, 109618 (2023).

    Google Scholar 

  28. Lai, L. et al. Comparing the differences in slowing myopia progression by riboflavin/ultraviolet A scleral cross-linking before and after lens-induced myopia in Guinea pigs. Curr. Eye Res. 47, 531–539 (2022).

    Google Scholar 

  29. Guo, L. et al. Morphological and vascular evidence of glaucomatous damage in myopic Guinea pigs with scleral crosslinking. Sci. Rep. 2024. 141 14, 1–6 (2024).

    Google Scholar 

  30. Fathima, N. N., Madhan, B., Rao, J. R., Nair, B. U. & Ramasami, T. Interaction of aldehydes with collagen: effect on thermal, enzymatic and conformational stability. Int. J. Biol. Macromol. 34, 241–247 (2004).

    Google Scholar 

  31. Brekelmans, J. et al. Enzymatic digestion of Porcine Corneas cross-linked by hypo- and hyperosmolar formulations of riboflavin/ultraviolet A or WST11/near-infrared light. Transl Vis. Sci. Technol. 9, 4–4 (2020).

    Google Scholar 

  32. Bhavani, A. L. & Nisha, J. Dextran-The polysaccharide with versatile uses. Int. J. Pharm. Biol. Sci. 1, 569–573 (2010).

    Google Scholar 

  33. Díaz-Montes, E., Lukova, P., Pierre, G. & Dextran Sources, structures, and properties. Polysaccharides 2021. 2, Pages 554–565 (2), 554–565 (2021).

    Google Scholar 

  34. Goz, A. Structural and biomechanical effects of bacteriochlorophyll ‎derivatives (BchlDs) and near infrared light (NIR) on sclera: elucidating the mechanism of action. (Doctoral dissertation, The Weizmann Institute of Science (Israel), (2018).

  35. Zi, Y. et al. Morphologic and biochemical changes in the retina and sclera induced by form deprivation high myopia in Guinea pigs. BMC Ophthalmol. 20, 1–9 (2020).

    Google Scholar 

  36. Hoang, Q. V., Rohrbach, D., McFadden, S. A. & Mamou, J. Regional changes in the elastic properties of myopic Guinea pig sclera. Exp. Eye Res. 186, 107739 (2019).

    Google Scholar 

  37. Zhang, R. et al. In-vivo sclera thickness measurements in experimental myopia of Guinea pigs. BMC Ophthalmol. 25, 1–9 (2025).

    Google Scholar 

  38. Barathi, A., Thu, M. K. & Beuerman, R. W. Dimensional growth of the rabbit eye. Cells Tissues Organs. 171, 276–285 (2002).

    Google Scholar 

  39. Olsen, T., Sanderson, S., science, X. F.-… visual & 2002, undefined. Porcine sclera:thickness and surface area. iovs.arvojournals.orgTW Olsen, S Sanderson, X Feng, WC HubbardInvestigative Ophthalmol.Vis. Sci. 2002•iovs.arvojournals.org.

  40. Vurgese, S., Panda-Jonas, S. & Jonas, J. B. Scleral thickness in human eyes. PLoS One. 7, e29692 (2012).

    Google Scholar 

  41. Zhang, Y. et al. Spontaneously myopic Guinea pig: model of early pathologic myopia. Invest. Ophthalmol. Vis. Sci. 64, 19–19 (2023).

    Google Scholar 

  42. Howlett, M. H. C. & McFadden, S. A. Emmetropization and schematic eye models in developing pigmented Guinea pigs. Vis. Res. 47, 1178–1190 (2007).

    Google Scholar 

  43. Loeliger, M. & Rees, S. Immunocytochemical development of the Guinea pig retina. Exp. Eye Res. 80, 9–21 (2005).

    Google Scholar 

  44. Ziegelberger, G. ICNIRP guidelines on limits of exposure to incoherent visible and infrared radiation. Health Phys. 105, 74–96 (2013).

    Google Scholar 

  45. Berdugo, M. et al. Evaluation of the new photosensitizer stakel (WST-11) for photodynamic choroidal vessel occlusion in rabbit and rat eyes. Investig. Ophthalmol. Vis. Sci. 49 (4), 1633–1644 (2008).

    Google Scholar 

  46. Gawargious, B. A., Le, A., Lesgart, M., Ugradar, S. & Demer, J. L. Differential regional stiffening of sclera by collagen cross-linking. Curr. Eye Res. 45, 718–725 (2020).

    Google Scholar 

  47. Wang, M., Zhang, F., Qian, X. & Zhao, X. Regional Biomechanical properties of human sclera after cross-linking by riboflavin/ultraviolet A. J. Refract. Surg. 28, 723–728 (2012).

    Google Scholar 

  48. Buchanan, C. I. & Marsh, R. L. Effects of long-term exercise on the Biomechanical properties of the Achilles tendon of Guinea fowl. J. Appl. Physiol. 90, 164–171 (2001).

    Google Scholar 

  49. Wren, T. A. L., Yerby, S. A., Beaupré, G. S. & Carter, D. R. Mechanical properties of the human Achilles tendon. Clin. Biomech. 16, 245–251 (2001).

    Google Scholar 

  50. Wang, E. B. et al. Safety and penetration of light into the brain. Photobiomodulation Brain Low-Level Laser Ther. Neurol. Neurosci. 49–66. https://doi.org/10.1016/B978-0-12-815305-5.00005-1 (2019).

  51. Yu, N. et al. Near-infrared-light activatable nanoparticles for deep-tissue-penetrating wireless optogenetics. Adv. Healthc. Mater. 8, 1801132 (2019).

    Google Scholar 

  52. Asha Krishnan, M., Yadav, K., Roach, P. & Chelvam, V. A targeted near-infrared nanoprobe for deep-tissue penetration and imaging of prostate cancer. Biomater. Sci. 9, 2295–2312 (2021).

    Google Scholar 

  53. Tang, J. et al. Efficacy of repeated low-level red-light therapy for slowing the progression of childhood myopia: a aystematic review and meta-analysis. Am. J. Ophthalmol. 252, 153–163 (2023).

    Google Scholar 

  54. Mokoena, D., Kumar, D., Houreld, S. S., Abrahamse, H. & N. N. & Role of photobiomodulation on the activation of the Smad pathway via TGF-β in wound healing. J. Photochem. Photobiol B Biol. 189, 138–144 (2018).

    Google Scholar 

  55. Zhu, Q. et al. Repeated low-level red-light therapy for controlling onset and progression of myopia-a review. Int. J. Med. Sci. 20, 1363 (2023).

    Google Scholar 

  56. Howlett, M. H. C. & McFadden, S. A. Spectacle lens compensation in the pigmented Guinea pig. Vis. Res. 49, 219–227 (2009).

    Google Scholar 

  57. Zadnik, K., Satariano, W. A., Mutti, D. O., Sholtz, R. I. & Adams, A. J. The effect of parental history of myopia on children’s eye size. JAMA 271, 1323–1327 (1994).

    Google Scholar 

  58. Rada, J., Achen, V., science, S. P.-… visual & 2000, undefined. Proteoglycan composition in the human sclera during growth and aging. arvojournals.orgJA Rada, VR Achen, S Penugonda, RW Schmidt, BA MountInvestigative Ophthalmol. Vis. Sci. 2000•arvojournals.org.

  59. Alenezi, B., Kazaili, A., Akhtar, R. & Radhakrishnan, H. Corneal Biomechanical properties following corneal cross-linking: does age have an effect? Exp. Eye Res. 214, 108839 (2022).

    Google Scholar 

  60. Paik, D. C., Wen, Q., Airiani, S., Braunstein, R. E. & Trokel, S. L. Aliphatic β-nitro alcohols for non-enzymatic collagen cross-linking of scleral tissue. Exp. Eye Res. 87, 279–285 (2008).

    Google Scholar 

  61. Paik, D. C., Solomon, M. R., Wen, Q., Turro, N. J. & Trokel, S. L. Aliphatic β-nitroalcohols for therapeutic corneoscleral cross-linking: chemical mechanisms and higher order nitroalcohols. Invest. Ophthalmol. Vis. Sci. 51, 836–843 (2010).

    Google Scholar 

  62. McFadden, S. A., Cox, N. & Abdulla, Y. Efficacy of Rose Bengal as a light activated cross-linker in Guinea pig sclera. Invest. Ophthalmol. Vis. Sci. 59, 714–714 (2018).

    Google Scholar 

  63. Troilo, D. et al. IMI – report on experimental models of emmetropization and myopia. Invest. Ophthalmol. Vis. Sci. 60, M31–M88 (2019).

    Google Scholar 

  64. Association for Research in Vision and Ophthalmology. Statement for the Use of Animals in Ophthalmic and Vision Research. (2021). https://www.arvo.org/globalassets/arvo/advocacy/advocacy-resources/other-toolkits/updated-arvo-statement-_revised_dec_2021.pdf

  65. Marcovich, A. L. et al. Stiffening of rabbit Corneas by the bacteriochlorophyll derivative WST11 744 using near infrared light. Invest. Ophthalmol. Vis. Sci. 53, 6378–6388 (2012).

    Google Scholar 

  66. Myles, W. E. & McFadden, S. A. Analytical methods for assessing retinal cell coupling using cut-loading. PLoS One. 17, 1–22 (2022).

    Google Scholar 

  67. Crank, J. The Mathematics of Diffusion (Oxford University Press, 1979).

  68. Moore, M. A., Chen, W. M., Phillips, R. E., Bohachevsky, I. K. & Mcilroy, B. K. Shrinkage temperature versus protein extraction as a measure of stabilization of photooxidized tissue. https://doi.org/10.1002/(SICI)1097-4636(199610)32:2

  69. Le Lous, M., Flandin, F., Herbage, D. & Allain, J. C. Influence of collagen denaturation on the chemorheological properties of skin, assessed by differential scanning calorimetry and hydrothermal isometric tension measurement. Biochim. Biophys. Acta – Gen. Subj. 717, 295–300 (1982).

    Google Scholar 

Download references