References
-
Kornberg, A., Kornberg, S. R. & Simms, E. Metaphosphate synthesis by an enzyme from Escherichia coli. Biochim. Biophys. Acta 20, 215–227 (1956).
-
Kornberg, S. R. Adenosine triphosphate synthesis from polyphosphate by an enzyme from Escherichia coli. Biochim. Biophys. Acta 26, 294–300 (1957).
-
Racki, L. R. et al. Polyphosphate granule biogenesis is temporally and functionally tied to cell cycle exit during starvation in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 114, E2440–E2449 (2017).
-
Achbergerová, L. & Nahálka, J. Polyphosphate–an ancient energy source and active metabolic regulator. Microb. Cell Fact. 10, 63 (2011).
-
Kornberg, A., Rao, N. N. & Ault-Riché, D. Inorganic polyphosphate: a molecule of many functions. Annu. Rev. Biochem. 68, 89–125 (1999).
-
Zhang, H., Ishige, K. & Kornberg, A. A polyphosphate kinase (PPK2) widely conserved in bacteria. Proc. Natl. Acad. Sci. USA 99, 16678–16683 (2002).
-
Ishige, K., Zhang, H. & Kornberg, A. Polyphosphate kinase (PPK2), a potent, polyphosphate-driven generator of GTP. Proc. Natl. Acad. Sci. USA 99, 16684–16688 (2002).
-
Leipe, D. D., Koonin, E. V. & Aravind, L. Evolution and classification of P-loop kinases and related proteins. J. Mol. Biol. 333, 781–815 (2003).
-
Longo, L. M. et al. On the emergence of P-Loop NTPase and Rossmann enzymes from a Beta-Alpha-Beta ancestral fragment. Elife 9, e64415 (2020).
-
Neville, N., Roberge, N. & Jia, Z. Polyphosphate kinase 2 (PPK2) enzymes: structure, function, and roles in bacterial physiology and virulence. Int. J. Mol. Sci. 23, 670 (2022).
-
Motomura, K. et al. A new subfamily of polyphosphate kinase 2 (class III PPK2) catalyzes both nucleoside monophosphate phosphorylation and nucleoside diphosphate phosphorylation. Appl. Environ. Microbiol. 80, 2602–2608 (2014).
-
Andexer, J. N. & Richter, M. Emerging enzymes for ATP regeneration in biocatalytic processes. Chembiochem 16, 380–386 (2015).
-
Tavanti, M., Hosford, J., Lloyd, R. C. & Brown, M. J. B. Recent developments and challenges for the industrial implementation of polyphosphate kinases. Chemcatchem 13, 3565–3580 (2021).
-
Intasian, P. et al. Enzymes, in vivo biocatalysis, and metabolic engineering for enabling a circular economy and sustainability. Chem. Rev. 121, 10367–10451 (2021).
-
Rasor, B. J. et al. Toward sustainable, cell-free biomanufacturing. Curr. Opin. Biotechnol. 69, 136–144 (2021).
-
Suzuki, S., Hara, R. & Kino, K. Production of aminoacyl prolines using the adenylation domain of nonribosomal peptide synthetase with class III polyphosphate kinase 2-mediated ATP regeneration. J. Biosci. Bioeng. 125, 644–648 (2018).
-
Lubberink, M. et al. Biocatalytic monoacylation of symmetrical diamines and its application to the synthesis of pharmaceutically relevant amides. ACS Catal. 10, 10005–10009 (2020).
-
Fedorchuk, T. P. et al. One-pot biocatalytic transformation of adipic acid to 6-aminocaproic acid and 1,6-hexamethylenediamine using carboxylic acid reductases and transaminases. J. Am. Chem. Soc. 142, 1038–1048 (2020).
-
Nocek, B. P. et al. Structural insights into substrate selectivity and activity of bacterial polyphosphate kinases. ACS Catal. 8, 10746–10760 (2018).
-
Wang, P.-H. et al. A bifunctional polyphosphate kinase driving the regeneration of nucleoside triphosphate and reconstituted cell-free protein synthesis. ACS Synth. Biol. 9, 36–42 (2020).
-
De, B. F., Maertens, J., Beauprez, J., Soetaert, W. & De, M. M. Biotechnological advances in UDP-sugar based glycosylation of small molecules. Biotechnol. Adv. 33, 288–302 (2015).
-
Blunsom, N. J. & Cockcroft, S. CDP-diacylglycerol synthases (CDS): Gateway to phosphatidylinositol and cardiolipin synthesis. Front. Cell Dev. Biol. 8, 63 (2020).
-
Frank, C., Teleki, A. & Jendrossek, D. Characterization of agrobacterium tumefaciens PPKs reveals the formation of oligophosphorylated products up to nucleoside nona-phosphates. Appl. Microbiol. Biotechnol. 104, 9683–9692 (2020).
-
Ogawa, M. et al. Class III polyphosphate kinase 2 enzymes catalyze the pyrophosphorylation of adenosine-5’-monophosphate. Chembiochem 20, 2961–2967 (2019).
-
Mordhorst, S. et al. Several polyphosphate kinase 2 enzymes catalyse the production of adenosine 5’-polyphosphates. Chembiochem 20, 1019–1022 (2019).
-
Ycas, M. On earlier states of the biochemical system. J. Theor. Biol. 44, 145–160 (1974).
-
Jensen, R. A. Enzyme recruitment in evolution of new function. Annu. Rev. Microbiol. 30, 409–425 (1976).
-
Matsumoto, R., Matsuura, T. & Longo, L. M. Distribution of polyphosphate kinase 2 genes in bacteria underscores a dynamic evolutionary history. Proteins 93, 972–980 (2024).
-
Wang, L. et al. Distribution patterns of polyphosphate metabolism pathway and its relationships with bacterial durability and virulence. Front. Microbiol. 9, 782 (2018).
-
Usvalampi, A., Li, H. & Frey, A. D. Production of glucose 6-phosphate from a cellulosic feedstock in a one pot multi-enzyme synthesis. Front. Bioeng. Biotechnol. 9, 678038 (2021).
-
Rexer, T. F. T. et al. One pot synthesis of GDP-mannose by a multi-enzyme cascade for enzymatic assembly of lipid-linked oligosaccharides. Biotechnol. Bioeng. 115, 192–205 (2018).
-
Zheng, J., Guo, N., Huang, Y., Guo, X. & Wagner, A. High temperature delays and low temperature accelerates evolution of a new protein phenotype. Nat. Commun. 15, 2495 (2024).
-
Tokuriki, N., Stricher, F., Serrano, L. & Tawfik, D. S. How protein stability and new functions trade off. PLoS Comput. Biol. 4, e1000002 (2008).
-
Ngivprom, U. et al. Synthesis of nicotinamide mononucleotide from xylose via coupling engineered Escherichia coli and a biocatalytic cascade. Chembiochem 23, e202200071 (2022).
-
Kimura, Y. & Kamatani, S. Catalytic activity profile of polyP:AMP phosphotransferase from Myxococcus xanthus. J. Biosci. Bioeng. 131, 147–152 (2021).
-
Li, Z. et al. Efficient one-pot synthesis of cytidine 5’-monophosphate using an extremophilic enzyme cascade system. J. Agric. Food Chem. 68, 9188–9194 (2020).
-
Achbergerová, L. & Nahálka, J. Degradation of polyphosphates by polyphosphate kinases from Ruegeria pomeroyi. Biotechnol. Lett. 36, 2029–2035 (2014).
-
Gao, H. et al. A high-throughput dual system to screen polyphosphate kinase mutants for efficient ATP regeneration in L-theanine biocatalysis. Biotechnol. Biofuels Bioprod. 16, 122 (2023).
-
Gupta, M. N. & Uversky, V. N. Moonlighting enzymes: when cellular context defines specificity. Cell. Mol. Life Sci. 80, 130 (2023).
-
Wu, W.-J., Zhou, Y.-X., Liu, Y., Chen, G.-J. & Du, Z.-J. Mangrovibacterium marinum sp. nov., isolated from a coastal sediment. Antonie Van Leeuwenhoek 107, 1583–1589 (2015).
-
Osterberg, R. & Orgel, L. E. Polyphosphate and trimetaphosphate formation under potentially prebiotic conditions. J. Mol. Evol. 1, 241–248 (1972).
-
Weiner, M. L. et al. Toxicological review of inorganic phosphates. Food Chem. Toxicol. 39, 759–786 (2001).
-
Ritz, E., Hahn, K., Ketteler, M., Kuhlmann, M. K. & Mann, J. Phosphate additives in food–a health risk. Dtsch. Arztebl. Int. 109, 49–55 (2012).
-
Tao, Y. H. et al. Hydration water drives the self-assembly of guanosine monophosphate. Biophys. J. 123, 931–939 (2024).
-
Cassidy, L. M., Burcar, B. T., Stevens, W., Moriarty, E. M. & McGown, L. B. Guanine-centric self-assembly of nucleotides in water: an important consideration in prebiotic chemistry. Astrobiology 14, 876–886 (2014).
-
Batten, L. E. et al. Biochemical and structural characterization of polyphosphate kinase 2 from the intracellular pathogen Francisella tularensis. Biosci. Rep. 36, e00294 (2015).
-
Parnell, A. E. et al. Substrate recognition and mechanism revealed by ligand-bound polyphosphate kinase 2 structures. Proc. Natl. Acad. Sci. USA 115, 3350–3355 (2018).
-
Nocek, B. et al. Polyphosphate-dependent synthesis of ATP and ADP by the family-2 polyphosphate kinases in bacteria. Proc. Natl. Acad. Sci. USA 105, 17730–17735 (2008).
-
Kotaka, M. et al. Structures of S. aureus thymidylate kinase reveal an atypical active site configuration and an intermediate conformational state upon substrate binding. Protein Sci. 15, 774–784 (2006).
-
Shimizu, Y. et al. Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19, 751–755 (2001).
-
Chen, X. et al. Visualizing RNA dynamics in live cells with bright and stable fluorescent RNAs. Nat. Biotechnol. 37, 1287–1293 (2019).
-
Roy, B., Depaix, A., Périgaud, C. & Peyrottes, S. Recent trends in nucleotide synthesis. Chem. Rev. 116, 7854–7897 (2016).
-
Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
-
Force, A. et al. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545 (1999).
-
Stoltzfus, A. On the possibility of constructive neutral evolution. J. Mol. Evol. 49, 169–181 (1999).
-
Khersonsky, O. & Tawfik, D. S. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu. Rev. Biochem. 79, 471–505 (2010).
-
Chaloupkova, R. et al. Light-emitting dehalogenases: reconstruction of multifunctional biocatalysts. ACS Catal. 9, 4810–4823 (2019).
-
Risso, V. A., Gavira, J. A., Mejia-Carmona, D. F., Gaucher, E. A. & Sanchez-Ruiz, J. M. Hyperstability and substrate promiscuity in laboratory resurrections of Precambrian β-lactamases. J. Am. Chem. Soc. 135, 2899–2902 (2013).
-
Alva, V., Söding, J. & Lupas, A. N. A vocabulary of ancient peptides at the origin of folded proteins. Elife 4, e09410 (2015).
-
Corlett, T., Smith, H. B., Smith, E., Goldford, J. & Longo, L. M. The history of enzyme evolution embedded in metabolism. Preprint at bioRxiv https://doi.org/10.1101/2025.07.16.665256 (2025).
-
Romero Romero, M. L. et al. Simple yet functional phosphate-loop proteins. Proc. Natl. Acad. Sci. Usa. 115, E11943–E11950 (2018).
-
Vyas, P. et al. Helicase-like functions in phosphate loop containing beta-alpha polypeptides. Proc. Natl. Acad. Sci. USA 118, e2016131118 (2021).
-
Vyas, P., Malitsky, S., Itkin, M. & Tawfik, D. S. On the origins of enzymes: phosphate-binding polypeptides mediate phosphoryl transfer to synthesize adenosine triphosphate. J. Am. Chem. Soc. 145, 8344–8354 (2023).
-
Paysan-Lafosse, T. et al. InterPro in 2022. Nucleic Acids Res. 51, D418–D427 (2023).
-
Li, W., Jaroszewski, L. & Godzik, A. Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics 17, 282–283 (2001).
-
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
-
Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
-
Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).
-
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
-
Shen, X.-X., Li, Y., Hittinger, C. T., Chen, X.-X. & Rokas, A. An investigation of irreproducibility in maximum likelihood phylogenetic inference. Nat. Commun. 11, 6096 (2020).
-
Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016).
-
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).
-
Philo, J. S. SEDNTERP: a calculation and database utility to aid interpretation of analytical ultracentrifugation and light scattering data. Eur. Biophys. J. 52, 233–266 (2023).
-
Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys. J. 78, 1606–1619 (2000).
-
Matsuura, T., Kazuta, Y., Aita, T., Adachi, J. & Yomo, T. Quantifying epistatic interactions among the components constituting the protein translation system. Mol. Syst. Biol. 5, 297 (2009).
-
Kuge, M. et al. Structural insights into broad-range polyphosphate kinase 2-II enzymes applicable for pyrimidine nucleoside diphosphate synthesis. Chembiochem 26, e202400970 (2025).
-
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).
