Adipocytic sclerostin loop3-LRP4 interaction required by sclerostin to impair whole-body lipid and glucose metabolism

adipocytic-sclerostin-loop3-lrp4-interaction-required-by-sclerostin-to-impair-whole-body-lipid-and-glucose-metabolism
Adipocytic sclerostin loop3-LRP4 interaction required by sclerostin to impair whole-body lipid and glucose metabolism

Data availability

Source data are provided with this paper. The raw data for the main text and supplementary information have been made available as downloadable Excel files. Source data are provided with this paper.

References

  1. Bernard, D. M. A. et al. Type 2 diabetes and osteosarcopenia: double trouble? A cross-sectional pilot study in Malaysia. J. ASEAN Federation Endocr. Soc. 38, 18–18 (2023).

    Google Scholar 

  2. Leidig-Bruckner, G. et al. Prevalence and determinants of osteoporosis in patients with type 1 and type 2 diabetes mellitus. BMC Endocr. Disord. 14, 1–13 (2014).

    Google Scholar 

  3. Wen, Y. et al. Correlation of osteoporosis in patients with newly diagnosed type 2 diabetes: a retrospective study in Chinese population. Front. Endocrinol. 12, 531904 (2021).

    Google Scholar 

  4. Li, J., Ren, Y., Li, S. & Li, J. Relationship between sclerostin (SOST) expression and genetic loci rs851056, rs1230399 polymorphisms and bone mineral density in postmenopausal women with type 2 diabetes in Xinjiang. Diab. Metab. Syndr. Obes. 14, 4443–4450 (2021).

    Google Scholar 

  5. Shah, A. D., Shoback, D. & Lewiecki, E. M. Sclerostin inhibition: a novel therapeutic approach in the treatment of osteoporosis. Int. J. Women’s. Health 7, 565–580 (2015).

    Google Scholar 

  6. Holdsworth, G., Roberts, S. J. & Ke, H. Z. Novel actions of sclerostin on bone. J. Mol. Endocrinol. 62, R167–R185 (2019).

    Google Scholar 

  7. Krause, C. et al. Distinct modes of inhibition by sclerostin on bone morphogenetic protein and Wnt signaling pathways. J. Biol. Chem. 285, 41614–41626 (2010).

    Google Scholar 

  8. Krishna, S. M. et al. Wnt signaling pathway inhibitor sclerostin inhibits angiotensin II-induced aortic aneurysm and atherosclerosis. Arterioscler Thromb. Vasc. Biol. 37, 553 (2017).

    Google Scholar 

  9. Bovijn, J. et al. Evaluating the cardiovascular safety of sclerostin inhibition using evidence from meta-analysis of clinical trials and human genetics. Sci. Transl. Med. 12, eaay6570 (2020).

  10. Kim, S. P. et al. Sclerostin influences body composition by regulating catabolic and anabolic metabolism in adipocytes. Proc. Natl. Acad. Sci. USA 114, E11238–E11247 (2017).

    Google Scholar 

  11. Jiang, H. et al. The role of sclerostin in lipid and glucose metabolism disorders. Biochem. Pharmacol. 215, 115694 (2023).

  12. Veverka, V. et al. Characterization of the structural features and interactions of sclerostin: molecular insight into a key regulator of Wnt-mediated bone formation. J. Biol. Chem. 284, 10890–10900 (2009).

    Google Scholar 

  13. Cosman, F. et al. Romosozumab treatment in postmenopausal women with osteoporosis. N. Engl. J. Med. 375, 1532–1543 (2016).

    Google Scholar 

  14. Tanaka, S. & Matsumoto, T. Sclerostin: from bench to bedside. J. Bone Min. Metab. 39, 332–340 (2021).

    Google Scholar 

  15. Veverka, V. et al. Characterization of the structural features and interactions of sclerostin. J. Biol. Chem. 284, 10890–10900 (2009).

    Google Scholar 

  16. Food U, Administration D. FDA approves new treatment for osteoporosis in postmenopausal women at high risk of fracture. News Release 9, (2019).

  17. Huang, J. et al. SOST/Sclerostin impairs the osteogenesis and angiogesis in glucocorticoid-associated osteonecrosis of femoral head. Mol. Med. 30, 167 (2024).

    Google Scholar 

  18. Golledge, J. & Thanigaimani, S. Role of sclerostin in cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 42, e187–e202 (2022).

    Google Scholar 

  19. Yu, Y. Y. et al. Targeting loop3 of sclerostin preserves its cardiovascular protective action and promotes bone formation. Nat. Commun. 13, 4241 (2022).

    Google Scholar 

  20. Wang, L. Y. et al. Therapeutic aptamer targeting sclerostin loop3 for promoting bone formation without increasing cardiovascular risk in osteogenesis imperfecta mice. Theranostics 12, 5645–5674 (2022).

    Google Scholar 

  21. Yu, S. et al. Discovery of the small molecular inhibitors against sclerostin loop3 as potential anti-osteoporosis agents by structural based virtual screening and molecular design. Eur. J. Med. Chem. 271, 116414 (2024).

    Google Scholar 

  22. Zhong, C. et al. Targeting osteoblastic 11β-HSD1 to combat high-fat diet-induced bone loss and obesity. Nat. Commun. 15, 8588 (2024).

    Google Scholar 

  23. Zhang, H. et al. A bimolecular modification strategy for developing long-lasting bone anabolic aptamer. Mol. Ther. Nucleic Acids 34, 102073 (2023).

    Google Scholar 

  24. Zhang, Y. et al. Strategies for developing long-lasting therapeutic nucleic acid aptamer targeting circulating proteins: the present and the future. Front. Cell Dev. Biol. 10, 1048148 (2022).

    Google Scholar 

  25. Karagiannis, T. et al. Management of type 2 diabetes with the dual GIP/GLP-1 receptor agonist tirzepatide: a systematic review and meta-analysis. Diabetologia 65, 1251–1261 (2022).

    Google Scholar 

  26. Alhindi, Y. & Avery, A. The efficacy and safety of oral semaglutide for glycaemic management in adults with type 2 diabetes compared to subcutaneous semaglutide, placebo, and other GLP-1 RA comparators: a systematic review and network meta-analysis. Contemp. Clin. Trials Commun. 28, 100944 (2022).

    Google Scholar 

  27. Wilding, J. P. et al. Once-weekly semaglutide in adults with overweight or obesity. N. Engl. J. Med. 384, 989 (2021).

    Google Scholar 

  28. Zong, Y. et al. Structural basis of agrin-LRP4-MuSK signaling. Genes Dev. 26, 247–258 (2012).

    Google Scholar 

  29. Kim, S. P. et al. Lrp4 expression by adipocytes and osteoblasts differentially impacts sclerostin’s endocrine effects on body composition and glucose metabolism. J. Biol. Chem. 294, 6899–6911 (2019).

    Google Scholar 

  30. Katchkovsky, S., Chatterjee, B., Abramovitch-Dahan, C. V., Papo, N. & Levaot, N. Competitive blocking of LRP4-sclerostin binding interface strongly promotes bone anabolic functions. Cell Mol. Life Sci. 79, 113 (2022).

    Google Scholar 

  31. García-Martín, A. et al. Circulating levels of sclerostin are increased in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 97, 234–241 (2012).

    Google Scholar 

  32. Gaudio, A. et al. Sclerostin levels associated with inhibition of the Wnt/β-catenin signaling and reduced bone turnover in type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 97, 3744–3750 (2012).

    Google Scholar 

  33. Huo, X. et al. Risk of non-fatal cardiovascular diseases in early-onset versus late-onset type 2 diabetes in China: a cross-sectional study. Lancet Diab. Endocrinol. 4, 115–124 (2016).

    Google Scholar 

  34. Gilbert ZA, Muller A, Leibowitz JA, Kesselman MM. Osteoporosis prevention and treatment: the risk of comorbid cardiovascular events in postmenopausal women. Cureus 14, e24117 (2022).

  35. (FDA) USFaDA. Press Announcements: FDA approves new treatment for osteoporosis in postmenopausal women at high risk of fracture. https://www.fda.gov9, (2019).

  36. González-Salvatierra, S. et al. Cardioprotective function of sclerostin by reducing calcium deposition, proliferation, and apoptosis in human vascular smooth muscle cells. Cardiovasc Diabetol. 22, 301 (2023).

    Google Scholar 

  37. Kadowaki, T. et al. Semaglutide once a week in adults with overweight or obesity, with or without type 2 diabetes in an East Asian population (STEP 6): a randomised, double-blind, double-dummy, placebo-controlled, phase 3a trial. Lancet Diab. Endocrinol. 10, 193–206 (2022).

    Google Scholar 

  38. Hansen, M. S. et al. Once-weekly semaglutide versus placebo in adults with increased fracture risk: a randomised, double-blinded, two-centre, phase 2 trial. EClinicalMedicine 72, 102624 (2024).

  39. Gerbaix, M., Ammann, P. & Ferrari, S. Mechanically driven counter-regulation of cortical bone formation in response to sclerostin-neutralizing antibodies. J. Bone Min. Res. 36, 385–399 (2021).

    Google Scholar 

  40. Jiang, R. et al. One-step bioprocess of inulin to product inulo-oligosaccharides using bacillus subtilis secreting an extracellular endo-inulinase. Appl. Biochem. Biotechnol. 187, 116–128 (2019).

    Google Scholar 

  41. Lyu, S., Zhang, C., Hou, X. & Wang, A. Tag-based pull-down assay. Methods Mol. Biol. 2400, 105–114 (2022).

    Google Scholar 

  42. Ukita, M., Yamaguchi, T., Ohata, N. & Tamura, M. Sclerostin enhances adipocyte differentiation in 3T3-L1 cells. J. Cell Biochem. 117, 1419–1428 (2016).

    Google Scholar 

  43. Gubu, A. et al. Unique quinoline orientations shape the modified aptamer to sclerostin for enhanced binding affinity and bone anabolic potential. Mol. Ther. Nucleic Acids 35, 102146 (2024).

    Google Scholar 

  44. Parlee, S. D., Lentz, S. I., Mori, H. & MacDougald, O. A. Quantifying size and number of adipocytes in adipose tissue. Methods Enzymol. 537, 93–122 (2014).

    Google Scholar 

  45. Lin, S. et al. The effects of atorvastatin on the prevention of osteoporosis and dyslipidemia in the high-fat-fed ovariectomized rats. Calcif. Tissue Int. 96, 541–551 (2015).

    Google Scholar 

Download references

Acknowledgements

This study was supported by the direct grant of The Chinese University of Hong Kong (Project No. 4054660), National Key R&D Program of China (No. 2018YFA0800804), Hong Kong General Research Fund from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project Nos. 12100725, 12100921, 12102120, 12102223, 12102524, 14103121, 14103420 and 14109721), Theme-Based Research Scheme from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. T12-201/20-R), Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 82300988), Shenzhen-Hong Kong-Macau Science and Technology Plan Project (Category C) (Grant No. SGDX20230821095359002), Basic and Applied Basic Research Fund from Department of Science and Technology of Guangdong Province (Project No. 2019B1515120089), Inter-institutional Collaborative Research Scheme from Hong Kong Baptist University (Project No. RC-ICRS/19-20/01), University-Industry Collaboration Programme from Innovation and Technology Commissions of the Hong Kong Special Administrative Region, China (Project No. UIM/298), University-Industry Collaboration Programme from Innovation and Technology Commissions of the Hong Kong Special Administrative Region, China (Project No. UIM/328), Key Project of Research and Development Plan of Hunan Province (Project No. 2022WK2010), and Youth’s Project of Guangdong Basic and Applied Basic Research Fund (GDSTC No. 2022A1515110044).

Author information

Author notes

  1. These authors contributed equally: Hewen Jiang, Xiaohui Tao, Sifan Yu, Yihao Zhang, Yuan Ma.

Authors and Affiliations

  1. School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China

    Hewen Jiang, Yihao Zhang, Yuan Ma, Ning Zhang, Huarui Zhang, Hang Luo, Chongguang Lei, Zongkang Zhang & Bao-Ting Zhang

  2. Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China

    Xiaohui Tao, Sifan Yu, Nanxi Li, Shenghang Wang, Xin Yang, Shijian Ding, Chuanxin Zhong, Haitian Li, Zhanghao Li, Xiaoxin Wen, Zefeng Chen, Meiheng Sun, Meishen Ren, Yuanyuan Yu, Jin Liu, Aiping Lyu, Dijie Li, Luyao Wang & Ge Zhang

  3. Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China

    Xiaohui Tao, Sifan Yu, Nanxi Li, Shenghang Wang, Xin Yang, Shijian Ding, Chuanxin Zhong, Haitian Li, Zhanghao Li, Xiaoxin Wen, Zefeng Chen, Meiheng Sun, Meishen Ren, Yuanyuan Yu, Jin Liu, Aiping Lyu, Dijie Li, Luyao Wang & Ge Zhang

  4. Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China

    Xiaohui Tao, Sifan Yu, Nanxi Li, Shenghang Wang, Xin Yang, Shijian Ding, Chuanxin Zhong, Haitian Li, Zhanghao Li, Xiaoxin Wen, Zefeng Chen, Meiheng Sun, Meishen Ren, Yuanyuan Yu, Jin Liu, Aiping Lyu, Dijie Li, Luyao Wang & Ge Zhang

  5. Osteoporosis and Sarcopenia Center, Department of Endocrinology and Metabolism, School of Medicine, Tongji University, The Shanghai Tenth People’s Hospital, Shanghai, China

    Hui Sheng

  6. Guangxi Universities Key Laboratory of Stem cell and Biopharmaceutical Technology, College of Life Sciences, Guangxi Normal University, Guilin, Guangxi, China

    Dijie Li

  7. Shenzhen Institute for Research and Continuing Education (IRACE), Hong Kong Baptist University, Shenzhen, Guangdong, China

    Dijie Li

  8. Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, Guangxi, China

    Dijie Li

  9. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education), Guangxi Normal University, Guilin, Guangxi, China

    Dijie Li

Authors

  1. Hewen Jiang
  2. Xiaohui Tao
  3. Sifan Yu
  4. Yihao Zhang
  5. Yuan Ma
  6. Nanxi Li
  7. Shenghang Wang
  8. Ning Zhang
  9. Xin Yang
  10. Shijian Ding
  11. Chuanxin Zhong
  12. Haitian Li
  13. Zhanghao Li
  14. Xiaoxin Wen
  15. Huarui Zhang
  16. Zefeng Chen
  17. Meiheng Sun
  18. Hang Luo
  19. Meishen Ren
  20. Chongguang Lei
  21. Yuanyuan Yu
  22. Jin Liu
  23. Zongkang Zhang
  24. Aiping Lyu
  25. Hui Sheng
  26. Dijie Li
  27. Luyao Wang
  28. Ge Zhang
  29. Bao-Ting Zhang

Contributions

B.-T.Z., G.Z., L.W., D.L., and H.S. supervised the whole project. H.J., X.T., S.Y., Y.Z., and Y.M. performed the major research, analyzed the data, and participated in manuscript writing and revision with equal contributions. N.L., S.W., N.Z., X.Y., and S.D. conducted the genotyping and bone metabolism analysis. C.Z., H.L., Z.L., X.W., H.Z., Z.C., and M.S. provided technical support for in vitro and in vivo studies. H.L., M.R., C.L., Y.M., Y.Y., J.L., Z.Z., and A.L. provided their professional expertise in aptamer-based drug discovery and manuscript revision.

Corresponding authors

Correspondence to Hui Sheng, Dijie Li, Luyao Wang, Ge Zhang or Bao-Ting Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Antonino Catalano, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Tao, X., Yu, S. et al. Adipocytic sclerostin loop3-LRP4 interaction required by sclerostin to impair whole-body lipid and glucose metabolism. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68526-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41467-026-68526-w