Adopting omics-based approaches to facilitate the establishment of microbial consortia to generate reproducible fermented foods with desirable properties

adopting-omics-based-approaches-to-facilitate-the-establishment-of-microbial-consortia-to-generate-reproducible-fermented-foods-with-desirable-properties
Adopting omics-based approaches to facilitate the establishment of microbial consortia to generate reproducible fermented foods with desirable properties

References

  1. Kim, D.-H., Jeong, D., Song, K.-Y. & Seo, K.-H. Comparison of traditional and backslopping methods for kefir fermentation based on physicochemical and microbiological characteristics. Lwt 97, 503–507 (2018).

    Google Scholar 

  2. Graham, A. E. & Ledesma-Amaro, R. The microbial food revolution. Nat. Commun. 14, 2231 (2023).

    Google Scholar 

  3. Steen, A. D. et al. High proportions of bacteria and archaea across most biomes remain uncultured. ISME J. 13, 3126–3130 (2019).

    Google Scholar 

  4. Chen, L. et al. Non-gene-editing microbiome engineering of spontaneous food fermentation microbiota—Limitation control, design control, and integration. Compr. Rev. Food Sci. Food Saf. 22, 1902–1932 (2023).

    Google Scholar 

  5. Li, S. et al. Innovative beverage creation through symbiotic microbial communities inspired by traditional fermented beverages: Current status, challenges and future directions. Crit. Rev. Food Sci. Nutr. 64, 10456–10483 (2024).

    Google Scholar 

  6. Mardis, E. R. The impact of next-generation sequencing technology on genetics. Trends Genet. 24, 133–141 (2008).

    Google Scholar 

  7. Goodwin, K. D. et al. DNA sequencing as a tool to monitor marine ecological status. Front. Mar. Sci. 4, 107 (2017).

    Google Scholar 

  8. Garg, D., Patel, N., Rawat, A. & Rosado, A. S. Cutting edge tools in the field of soil microbiology. Curr. Res. Microb. Sci. 6, 100226 (2024).

    Google Scholar 

  9. Zhang, E. et al. A genomics-based investigation of acetic acid bacteria across a global fermented food metagenomics dataset. iScience 28 (2025).

  10. Leech, J. et al. Fermented-food metagenomics reveals substrate-associated differences in taxonomy and health-associated and antibiotic resistance determinants. MSystems 5, 00522–00520 (2020).

    Google Scholar 

  11. Carlino, N. et al. Unexplored microbial diversity from 2,500 food metagenomes and links with the human microbiome. Cell 187, 5775–5795. e5715 (2024).

    Google Scholar 

  12. Breselge, S. et al. The core microbiomes and associated metabolic potential of water kefir as revealed by pan multi-omics. Commun. Biol. 8, 415 (2025).

    Google Scholar 

  13. Landis, E. A. et al. Microbial diversity and interaction specificity in kombucha tea fermentations. Msystems 7, e00157–00122 (2022).

    Google Scholar 

  14. Junge, K., Cameron, K. & Nunn, B. in Microbial diversity in the genomic era 197-216 (Elsevier, 2019).

  15. Bashiardes, S., Zilberman-Schapira, G. & Elinav, E. Use of metatranscriptomics in microbiome research. Bioinforma. Biol. Insights 10, S34610 (2016).

    Google Scholar 

  16. Zhao, Y., Wu, Z., Miyao, S. & Zhang, W. Unraveling the flavor profile and microbial roles during industrial Sichuan radish paocai fermentation by molecular sensory science and metatranscriptomics. Food Biosci. 48, 101815 (2022).

    Google Scholar 

  17. Xiao, M. et al. Metatranscriptomics reveals the gene functions and metabolic properties of the major microbial community during Chinese Sichuan Paocai fermentation. Food Microbiol. 98, 103573 (2021).

    Google Scholar 

  18. Zhao, Y. et al. Integrating metabolomics and metatranscriptomics to explore the formation pathway of aroma-active volatile phenolics and metabolic profile during industrial radish paocai fermentation. Food Res. Int. 167, 112719 (2023).

    Google Scholar 

  19. Pan, Y. et al. Metatranscriptomics unravel composition, drivers, and functions of the active microorganisms in light-flavor liquor fermentation. Microbiol. Spectr. 10, e02151–02121 (2022).

    Google Scholar 

  20. Kim, K. H., Chun, B. H., Kim, J. & Jeon, C. O. Identification of biogenic amine-producing microbes during fermentation of ganjang, a Korean traditional soy sauce, through metagenomic and metatranscriptomic analyses. Food Control 121, 107681 (2021).

    Google Scholar 

  21. Zhang, L. et al. Metatranscriptomic approach reveals the functional and enzyme dynamics of core microbes during noni fruit fermentation. Food Res. Int. 141, 109999 (2021).

    Google Scholar 

  22. Zhang, L. et al. Acetobacter sp. improves the undesirable odors of fermented noni (Morinda citrifolia L.) juice. Food Chem. 401, 134126 (2023).

    Google Scholar 

  23. Bikel, S. et al. Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome. Computational Struct. Biotechnol. J. 13, 390–401 (2015).

    Google Scholar 

  24. Pedersen, S., Bloch, P. L., Reeh, S. & Neidhardt, F. C. Patterns of protein synthesis in E. coli: a catalog of the amount of 140 individual proteins at different growth rates. Cell 14, 179–190 (1978).

    Google Scholar 

  25. Pandey, A. & Lewitter, F. Nucleotide sequence databases: a gold mine for biologists. Trends Biochemical Sci. 24, 276–280 (1999).

    Google Scholar 

  26. Yang, L., Fan, W. & Xu, Y. Metaproteomics insights into traditional fermented foods and beverages. Compr. Rev. Food Sci. Food Saf. 19, 2506–2529 (2020).

    Google Scholar 

  27. Belda, I. et al. Microbial contribution to wine aroma and its intended use for wine quality improvement. Molecules 22, 189 (2017).

    Google Scholar 

  28. Huang, R., Han, M., Meng, L. & Chen, X. Transcriptome-wide discovery of coding and noncoding RNA-binding proteins. Proc. Natl. Acad. Sci. 115, E3879–E3887 (2018).

    Google Scholar 

  29. Ribeiro, D. M. et al. Protein complex scaffolding predicted as a prevalent function of long non-coding RNAs. Nucleic Acids Res. 46, 917–928 (2018).

    Google Scholar 

  30. Farghal, H. H., Mansour, S. T., Khattab, S., Zhao, C. & Farag, M. A. A comprehensive insight on modern green analyses for quality control determination and processing monitoring in coffee and cocoa seeds. Food Chem. 394, 133529 (2022).

    Google Scholar 

  31. Wishart, D. S. Metabolomics: applications to food science and nutrition research. Trends Food Sci. Technol. 19, 482–493 (2008).

    Google Scholar 

  32. Zhang, X., Zheng, Y., Feng, J., Zhou, R. & Ma, M. Integrated metabolomics and high-throughput sequencing to explore the dynamic correlations between flavor related metabolites and bacterial succession in the process of Mongolian cheese production. Food Res. Int. 160, 111672 (2022).

    Google Scholar 

  33. Zhou, X. et al. The correlation mechanism between dominant bacteria and primary metabolites during fermentation of red sour soup. Foods 11, 341 (2022).

    Google Scholar 

  34. Santiago-Rodriguez, T. M. & Hollister, E. B. in Seminars in perinatology. 151456 (Elsevier).

  35. Lagier, J.-C. et al. Culturing the human microbiota and culturomics. Nat. Rev. Microbiol. 16, 540–550 (2018).

    Google Scholar 

  36. Niccum, B. A., Kastman, E. K., Kfoury, N., Robbat, A. Jr. & Wolfe, B. E. Strain-level diversity impacts cheese rind microbiome assembly and function. Msystems 5, 00149–00120 (2020).

    Google Scholar 

  37. Karim, A. Y. Isolation and characterization of lactic acid bacteria with probiotic potential from traditional fermented special Kurdish cheese (Zhazhi) in Kurdistan region, Iraq. Cell. Mol. Biol. 69, 75–83 (2023).

    Google Scholar 

  38. Zhang, J. et al. Cultivating the uncultured: Harnessing the “sandwich agar plate” approach to isolate heme-dependent bacteria from marine sediment. Mlife 3, 143–155 (2024).

    Google Scholar 

  39. Yoon, S. et al. Multifunctional probiotic and functional properties of Lactiplantibacillus plantarum LRCC5314, isolated from kimchi. J. Microbiol. Biotechnol. 32, 72 (2021).

    Google Scholar 

  40. Xu, J. et al. Culturing bacteria from fermentation pit muds of Baijiu with culturomics and amplicon-based metagenomic approaches. Front. Microbiol. 11, 1223 (2020).

    Google Scholar 

  41. Li, Y. et al. Culturomics: A promising approach for exploring bacterial diversity in natural fermented milk. Food Biosci. 62, 105383 (2024).

    Google Scholar 

  42. Calabrese, F. M. et al. Metabolic framework of spontaneous and synthetic sourdough metacommunities to reveal microbial players responsible for resilience and performance. Microbiome 10, 148 (2022).

    Google Scholar 

  43. Wang, S., Wu, Q., Nie, Y., Wu, J. & Xu, Y. Construction of synthetic microbiota for reproducible flavor compound metabolism in Chinese light-aroma-type liquor produced by solid-state fermentation. Appl. Environ. Microbiol. 85, e03090–03018 (2019).

    Google Scholar 

  44. Zhao, M. et al. An integrated metagenomics/metaproteomics investigation of the microbial communities and enzymes in solid-state fermentation of Pu-erh tea. Sci. Rep. 5, 10117 (2015).

    Google Scholar 

  45. Wen, L. et al. Applications of multi-omics techniques to unravel the fermentation process and the flavor formation mechanism in fermented foods. Crit. Rev. Food Sci. Nutr. 64, 8367–8383 (2024).

    Google Scholar 

  46. Tan, M. S., Cheah, P.-L., Chin, A.-V., Looi, L.-M. & Chang, S.-W. A review on omics-based biomarkers discovery for Alzheimer’s disease from the bioinformatics perspectives: statistical approach vs machine learning approach. Computers Biol. Med. 139, 104947 (2021).

    Google Scholar 

  47. Khorraminezhad, L., Leclercq, M., Droit, A., Bilodeau, J.-F. & Rudkowska, I. Statistical and machine-learning analyses in nutritional genomics studies. Nutrients 12, 3140 (2020).

    Google Scholar 

  48. Li, S., Han, Y., Yan, M., Qiu, S. & Lu, J. Machine learning and multi-omics integration to reveal biomarkers and microbial community assembly differences in abnormal stacking fermentation of sauce-flavor baijiu. Foods 14, 245 (2025).

    Google Scholar 

  49. Arrigan, D., Kothe, C. I., Oliverio, A., Evans, J. D. & Wolfe, B. E. Novel fermentations integrate traditional practice and rational design of fermented-food microbiomes. Curr. Biol. 34, R1094–R1108 (2024).

    Google Scholar 

  50. Sawant, S. S., Park, H.-Y., Sim, E.-Y., Kim, H.-S. & Choi, H.-S. Microbial Fermentation in Food: Impact on Functional Properties and Nutritional Enhancement—A Review of Recent Developments. Fermentation (Basel) 11 (2025).

  51. Yassunaka Hata, N. N., Surek, M., Sartori, D., Vassoler Serrato, R. & Aparecida Spinosa, W. Role of acetic acid bacteria in food and beverages. Food Technol. Biotechnol. 61, 85–103 (2023).

    Google Scholar 

  52. Landete, J. M. A review of food-grade vectors in lactic acid bacteria: from the laboratory to their application. Crit. Rev. Biotechnol. 37, 296–308 (2017).

    Google Scholar 

  53. Zhang, K. et al. The regulation of key flavor of traditional fermented food by microbial metabolism: A review. Food Chem.: X 19, 100871 (2023).

    Google Scholar 

  54. Wang, Y., Zhang, C., Liu, F., Jin, Z. & Xia, X. Ecological succession and functional characteristics of lactic acid bacteria in traditional fermented foods. Crit. Rev. Food Sci. Nutr. 63, 5841–5855 (2023).

    Google Scholar 

  55. Zheng, Z. et al. Effects of assorted radishes on the flavor development and bacterial community succession of radish paocai during fermentation. LWT 187, 115377 (2023).

    Google Scholar 

  56. Lynch, K. M., Zannini, E., Wilkinson, S., Daenen, L. & Arendt, E. K. Physiology of acetic acid bacteria and their role in vinegar and fermented beverages. Compr. Rev. Food Sci. Food Saf. 18, 587–625 (2019).

    Google Scholar 

  57. Jayaram, V. B., Cuyvers, S., Verstrepen, K. J., Delcour, J. A. & Courtin, C. M. Succinic acid in levels produced by yeast (Saccharomyces cerevisiae) during fermentation strongly impacts wheat bread dough properties. Food Chem. 151, 421–428 (2014).

    Google Scholar 

  58. Li, Z., Zheng, M., Zheng, J. & Gänzle, M. G. Bacillus species in food fermentations: An underappreciated group of organisms for safe use in food fermentations. Curr. Opin. Food Sci. 50, 101007 (2023).

    Google Scholar 

  59. Wu, G. et al. A core microbiome signature as an indicator of health. Cell 187, 6550–6565. e6511 (2024).

    Google Scholar 

  60. Ferremi Leali, N. et al. Reconstruction of simplified microbial consortia to modulate sensory quality of kombucha tea. Foods 11, 3045 (2022).

    Google Scholar 

  61. Black, C., Parker, M., Siebert, T., Capone, D. & Francis, I. Terpenoids and their role in wine flavour: recent advances. Aust. J. Grape Wine Res. 21, 582–600 (2015).

    Google Scholar 

  62. Saerens, S. M., Delvaux, F. R., Verstrepen, K. J. & Thevelein, J. M. Production and biological function of volatile esters in Saccharomyces cerevisiae. Microb. Biotechnol. 3, 165–177 (2010).

    Google Scholar 

  63. Tran, T. et al. Use of a minimal microbial consortium to determine the origin of kombucha flavor. Front. Microbiol. 13, 836617 (2022).

    Google Scholar 

  64. Bourrie, B. C. et al. Use of reconstituted kefir consortia to determine the impact of microbial composition on kefir metabolite profiles. Food Res. Int. 173, 113467 (2023).

    Google Scholar 

  65. Li, R. et al. Enhancing the proportion of gluconic acid with a microbial community reconstruction method to improve the taste quality of Kombucha. Lwt 155, 112937 (2022).

    Google Scholar 

  66. Zhang, Q. et al. Bioaugmentation by Pediococcus acidilactici AAF1-5 improves the bacterial activity and diversity of cereal vinegar under solid-state fermentation. Front. Microbiol. 11, 603721 (2021).

    Google Scholar 

  67. Bao, R. et al. Shortening fermentation period and quality improvement of fermented fish, Chouguiyu, by co-inoculation of Lactococcus lactis M10 and Weissella cibaria M3. Front. Microbiol. 9, 3003 (2018).

    Google Scholar 

  68. Eng, A. & Borenstein, E. Microbial community design: methods, applications, and opportunities. Curr. Opin. Biotechnol. 58, 117–128 (2019).

    Google Scholar 

  69. Kong, W., Meldgin, D. R., Collins, J. J. & Lu, T. Designing microbial consortia with defined social interactions. Nat. Chem. Biol. 14, 821–829 (2018).

    Google Scholar 

  70. Wang, H. et al. Core microbes identification and synthetic microbiota construction for the production of Xiaoqu light-aroma Baijiu. Food Res. Int. 183, 114196 (2024).

    Google Scholar 

  71. Huang, X., Xin, Y. & Lu, T. A systematic, complexity-reduction approach to dissect the kombucha tea microbiome. Elife 11, e76401 (2022).

    Google Scholar 

  72. Stadie, J., Gulitz, A., Ehrmann, M. A. & Vogel, R. F. Metabolic activity and symbiotic interactions of lactic acid bacteria and yeasts isolated from water kefir. Food Microbiol. 35, 92–98 (2013).

    Google Scholar 

  73. Liu, Z. et al. Screening of strains from pickles and evaluation of characteristics of different methods of fast and low salt fermented mustard leaves (Brassica juncea var. multiceps). Food Res. Int. 201, 115557 (2025).

    Google Scholar 

  74. Jiao, W. et al. Identification of core microbiota in the fermented grains of a Chinese strong-flavor liquor from Sichuan. Lwt 158, 113140 (2022).

    Google Scholar 

  75. Zhao, X., Kerpes, R. & Becker, T. Evaluation of microtiter plate as a high-throughput screening platform for beer fermentation. Eur. Food Res. Technol. 248, 1831–1846 (2022).

    Google Scholar 

  76. Li, X., You, B., Shum, H. C. & Chen, C.-H. Future foods: Design, fabrication and production through microfluidics. Biomaterials 287, 121631 (2022).

    Google Scholar 

  77. Motoshima, H., Fujioka, I. & Uchida, K. Identification of dominant species common to kefir grains from seven origins for kefir grain reconstruction. J. Dairy Sci. (2025).

  78. Wu, L. et al. Improving the aroma profile of inoculated fermented sausages by constructing a synthetic core microbial community. J. Food Sci. 88, 4388–4402 (2023).

    Google Scholar 

  79. Degenhardt, R. et al. Detection of enteric viruses and core microbiome analysis in artisanal colonial salami-type dry-fermented sausages from santa catarina, Brazil. Foods 10, 1957 (2021).

    Google Scholar 

  80. Huang, T. et al. Constructing a defined starter for multispecies vinegar fermentation via evaluation of the vitality and dominance of functional microbes in an autochthonous starter. Appl. Environ. Microbiol. 88, e02175–02121 (2022).

    Google Scholar 

  81. Zhou, Q. et al. Unraveling the core bacterial community responsible for quality and flavor improvement of the radish paocai during spontaneous fermentation. Food Biosci. 55, 102956 (2023).

    Google Scholar 

  82. Zhao, N. et al. Illumination and reconstruction of keystone microbiota for reproduction of key flavor-active volatile compounds during paocai (a traditional fermented vegetable) fermentation. Food Biosci. 56, 103148 (2023).

    Google Scholar 

  83. An, F. et al. Investigating the core microbiota and its influencing factors in traditional Chinese pickles. Food Res. Int. 147, 110543 (2021).

    Google Scholar 

  84. Zong, C. et al. Construction and metabolomics of silage-derived lactic acid bacteria-based consortia. J. Appl. Microbiol. 136, lxaf178 (2025).

    Google Scholar 

Download references